Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 616
Filter
1.
Front Chem ; 12: 1417715, 2024.
Article in English | MEDLINE | ID: mdl-38979404

ABSTRACT

Antimicrobial photodynamic therapy (aPDT) has emerged as a highly promising strategy for non-antibiotic treatment of infections due to its unique advantages in efficient bactericidal action and reduction of drug resistance. The natural photosensitizing properties of curcumin (Cur) are widely acknowledged; however, its limited bioavailability has impeded its practical application. In this study, we developed a nanomaterial called Cur@ZIF-8@BA by encapsulating Cur within ZIF-8 and modifying the surface with boric acid (BA). The Cur@ZIF-8@BA exhibits pH-responsive properties and enhances bacterial binding, thereby effectively promoting photodynamic therapy. Moreover, its antibacterial activity against E. coli, Staphylococcus aureus and A. baumannii is significantly increased in the presence of light compared to a dark environment. The mechanism behind this may be that BA increases the affinity of Cur@ZIF-8@BA towards bacteria, and making released Zn2+ and BA from the nanomaterial increase bacterial cell membrane permeability. This facilitates efficient delivery of Cur into bacterial cells, resulting in generation of abundant reactive oxygen species (ROS) and subsequent bactericidal activity. In conclusion, our prepared Cur@ZIF-8@BA holds great promise as a photodynamically mediated antimicrobial strategy.

2.
Mol Neurobiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981960

ABSTRACT

Hemorrhagic stroke is a global health problem owing to its high morbidity and mortality rates. Nicotinamide riboside is an important precursor of nicotinamide adenine dinucleotide characterized by a high bioavailability, safety profile, and robust effects on many cellular signaling processes. This study aimed to investigate the protective effects of nicotinamide riboside against collagenase-induced hemorrhagic stroke and its underlying mechanisms of action. An intracerebral hemorrhage model was constructed by stereotactically injecting collagenase into the right striatum of adult male Institute for Cancer Research mice. After 30 minutes, nicotinamide riboside was administered via the tail vein. The mice were sacrificed at different time points for assessments. Nicotinamide riboside reduced collagenase-induced hemorrhagic area, significantly reduced cerebral water content and histopathological damage, promoted neurological function recovery, and suppressed reactive oxygen species production and neuroinflammation. Nicotinamide riboside exerts neuroprotective effects against collagenase-induced intracerebral hemorrhage by inhibiting neuroinflammation and oxidative stress.

3.
J Transl Med ; 22(1): 587, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902737

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a serious global health burden because of its high morbidity and mortality rates. Hypoxia and massive lactate production are hallmarks of the CRC microenvironment. However, the effects of hypoxia and lactate metabolism on CRC have not been fully elucidated. This study aimed to develop a novel molecular subtyping based on hypoxia-related genes (HRGs) and lactate metabolism-related genes (LMRGs) and construct a signature to predict the prognosis of patients with CRC and treatment efficacy. METHODS: Bulk and single-cell RNA-sequencing and clinical data of CRC were downloaded from the TCGA and GEO databases. HRGs and LMRGs were obtained from the Molecular Signatures Database. The R software package DESeq2 was used to perform differential expression analysis. Molecular subtyping was performed using unsupervised clustering. A predictive signature was developed using univariate Cox regression, random forest model, LASSO, and multivariate Cox regression analyses. Finally, the sensitivity of tumor cells to chemotherapeutic agents before and after hypoxia was verified using in vitro experiments. RESULTS: We classified 575 patients with CRC into three molecular subtypes and were able to distinguish their prognoses clearly. The C1 subtype, which exhibits high levels of hypoxia, has a low proportion of CD8 + T cells and a high proportion of macrophages. The expression of immune checkpoint genes is generally elevated in C1 patients with severe immune dysfunction. Subsequently, we constructed a predictive model, the HLM score, which effectively predicts the prognosis of patients with CRC and the efficacy of immunotherapy. The HLM score was validated in GSE39582, GSE106584, GSE17536, and IMvigor210 datasets. Patients with high HLM scores exhibit high infiltration of CD8 + exhausted T cells (Tex), especially terminal Tex, and oxidative phosphorylation (OXPHOS)-Tex in the immune microenvironment. Finally, in vitro experiments confirmed that CRC cell lines were less sensitive to 5-fluorouracil, oxaliplatin, and irinotecan under hypoxic conditions. CONCLUSION: We constructed novel hypoxia- and lactate metabolism-related molecular subtypes and revealed their immunological and genetic characteristics. We also developed an HLM scoring system that could be used to predict the prognosis and efficacy of immunotherapy in patients with CRC.


Subject(s)
Colorectal Neoplasms , Lactic Acid , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Prognosis , Lactic Acid/metabolism , Gene Expression Regulation, Neoplastic , Male , Hypoxia/genetics , Hypoxia/metabolism , Tumor Microenvironment/genetics , Female , Cell Line, Tumor , Middle Aged , Cell Hypoxia/genetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
4.
Article in English | MEDLINE | ID: mdl-38886186

ABSTRACT

Large-scale transcriptomic data are crucial for understanding the molecular features of hepatocellular carcinoma (HCC). Integrated 15 transcriptomic datasets of HCC clinical samples, the first version of HCC database (HCCDB v1.0) was released in 2018. Through the meta-analysis of differentially expressed genes and prognosis-related genes across multiple datasets, it provides a systematic view of the altered biological processes and the inter-patient heterogeneities of HCC with high reproducibility and robustness. With four years having passed, the database now needs integration of recently published datasets. Furthermore, the latest single-cell and spatial transcriptomics have provided a great opportunity to decipher complex gene expression variations at the cellular level with spatial architecture. Here, we present HCCDB v2.0, an updated version that combines bulk, single-cell, and spatial transcriptomic data of HCC clinical samples. It dramatically expands the bulk sample size by adding 1656 new samples from 11 datasets to the existing 3917 samples, thereby enhancing the reliability of transcriptomic meta-analysis. A total of 182,832 cells and 69,352 spatial spots are added to the single-cell and spatial transcriptomics sections, respectively. A novel single-cell level and 2-dimension (sc-2D) metric is proposed as well to summarize cell type-specific and dysregulated gene expression patterns. Results are all graphically visualized in our online portal, allowing users to easily retrieve data through a user-friendly interface and navigate between different views. With extensive clinical phenotypes and transcriptomic data in the database, we show two applications for identifying prognosis-associated cells and tumor microenvironment. HCCDB v2.0 is available at http://lifeome.net/database/hccdb2.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Single-Cell Analysis , Transcriptome , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Single-Cell Analysis/methods , Transcriptome/genetics , Databases, Genetic , Gene Expression Profiling/methods , RNA-Seq/methods , Gene Expression Regulation, Neoplastic/genetics , Single-Cell Gene Expression Analysis
5.
Int J Surg ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935114

ABSTRACT

BACKGROUND: Hepatic ischemia reperfusion injury (HIRI) is a common injury not only during liver transplantation but also during major hepatic surgery. HIRI causes severe complications and affects the prognosis and survival of patients. Cuproptosis, a newly identified form of cell death, plays an important role in a variety of illnesses. However, its role in HIRI remains unknown. MATERIALS AND METHODS: The GSE151648 dataset was mined from the Gene Expression Omnibus (GEO) database, and differences were analyzed for intersections. Based on the differentially expressed genes (DEGs), functional annotation, differentially expressed cuproptosis-related genes (DE-CRGs) identification and lasso logistic regression were conducted. Correlation analysis of DE-CRGs and immune infiltration was further conducted, and DE-CRGs were applied to construct an HIRI diagnostic model. The hierarchical clustering method was used to classify the specimens of HIRI, and functional annotation was conducted to verify the accuracy of these DE-CRGs in predicting HIRI progression. The GSE14951 microarray dataset and GSE171539 single-cell sequencing dataset were chosen as validation datasets. At the same time, the significance of DE-CRGs was verified using a mouse model of HIRI with cuproptosis inhibitors and inducers. Finally, a network of transcription-factor-DE-CRGs and miRNA-DE-CRGs was constructed to reveal the regulation mechanisms. And potential drugs for DE-CRGs were predicted using Drug Gene Interaction Database (DGIdb). RESULTS: Overall, 2390 DEGs and 19 DE-CRGs were identified. Through machine learning algorithms, 8 featured DE-CRGs (GNL3, ALAS1, TSC22D2, KLF5, GTF2B, DNTTIP2, SLFN11 and HNRNPU) were screened, and 2 cuproptosis-related subclusters were defined. Based on the 8 DE-CRGs obtained from the HIRI model (AUC=0.97), the nomogram model demonstrated accuracy in predicting HIRI. Eight DE-CRGs were highly expressed in HIRI samples and were negatively related to immune cell infiltration. A higher level of immune infiltration and expression of CRG group B was found in the HIRI population. Differences in cell death and immune regulation were found between the 2 groups. The diagnostic value of the 8 DE-CRGs was confirmed in the validation of two datasets. The identification of 7 DE-CRGs (SLFN11 excluded) by HIRI animal model experiments was also confirmed. Using hTFtarget, miRWalk and DGIDB database, we predicted that 17 transcription factors, 192 miRNAs and 10 drugs might interact with the DE-CRGs. CONCLUSION: This study shows that cuproptosis may occur in HIRI and is correlated with immune infiltration. Additionally, a cuproptosis-related predictive model was constructed for studying the causes of HIRI and developing targeted treatment options for HIRI.

6.
ACS Omega ; 9(18): 20185-20195, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737014

ABSTRACT

The absolute structures of a pair of infinite Na(H2O)4+-connected ε-Keggin-Al13 species (Na-ε-K-Al13) that were inversion structures and mirror images of each other were determined. Single crystals obtained by adding A2SO4 (A = Li, Na, K, Rb, or Cs) solution to NaOH-hydrolyzed AlCl3 solution were subjected to X-ray structure analyses. The statistical results for 36 single crystals showed that all the crystals had almost the same unit cell parameter, belonged to the same F4̅3m space group, and possessed the same structural formula [Na(H2O)4AlO4Al12(OH)24(H2O)12](SO4)4·10H2O. However, the crystals had two inverse absolute structures (denoted A and B), which had a crystallization ratio of 1:1. From Li+ to Cs+, with increasing volume of the cation coexisting in the mother solution, the degree of disorder of the four H2O molecules in the Na(H2O)4+ hydrated ion continuously decreased; they became ordered when the cation was Cs+. Absolute structures A and B are the first two infinite aluminum polycations connected by statistically occupied [(Na1/4)4(H2O)4]+ hydrated ions. The three-dimensional structure of the infinite Na-ε-K-Al13 species can be regarded as the assembly of finite ε-K-Al13 species linked by [(Na1/4)4(H2O)4]+ in a 1:1 ratio. In this assembly, each [(Na1/4)4(H2O)4]+ is connected to four ε-K-Al13 and each ε-K-Al13 is also connected to four [(Na1/4)4(H2O)4]+ in tetrahedral orientations to form a continuous rigid framework structure, which has an inverse spatial orientation between absolute structure A and B. This discovery clarifies that the ε-K-Al13 (or ε-K-GaAl12) species in Na[MO4Al12(OH)24(H2O)12](XO4)4·nH2O (M = Al, Ga; X = S, Se; n = 10-20) exists as discrete groups and deepens understanding of the formation and evolution process of polyaluminum species in forcibly hydrolyzed aluminum salt solution. The reason why Na+ statistically occupies the four sites was examined, and a formation and evolution mechanism of the infinite Na-ε-K-Al13 species was proposed.

7.
Nat Biomed Eng ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698155

ABSTRACT

The adenovirus-mediated somatic transfer of the embryonic T-box transcription factor 18 (TBX18) gene can convert chamber cardiomyocytes into induced pacemaker cells. However, the translation of therapeutic TBX18-induced cardiac pacing faces safety challenges. Here we show that the myocardial expression of synthetic TBX18 mRNA in animals generates de novo pacing and limits innate and inflammatory immune responses. In rats, intramyocardially injected mRNA remained localized, whereas direct myocardial injection of an adenovirus carrying a reporter gene resulted in diffuse expression and in substantial spillover to the liver, spleen and lungs. Transient expression of TBX18 mRNA in rats led to de novo automaticity and pacemaker properties and, compared with the injection of adenovirus, to substantial reductions in the expression of inflammatory genes and in activated macrophage populations. In rodent and clinically relevant porcine models of complete heart block, intramyocardially injected TBX18 mRNA provided rate-adaptive cardiac pacing for one month that strongly correlated with the animal's sinus rhythm and physical activity. TBX18 mRNA may aid the development of biological pacemakers.

8.
Front Pharmacol ; 15: 1377235, 2024.
Article in English | MEDLINE | ID: mdl-38783961

ABSTRACT

Protein glycosylation is an extensively studied field, with the most studied forms being oxygen or nitrogen-linked N-acetylglucosamine (O-GlcNAc or N-GlcNAc) glycosylation. Particular residues on proteins are targeted by O-GlcNAcylation, which is among the most intricate post-translational modifications. Significantly contributing to an organism's proteome, it influences numerous factors affecting protein stability, function, and subcellular localization. It also modifies the cellular function of target proteins that have crucial responsibilities in controlling pathways related to the central nervous system, cardiovascular homeostasis, and other organ functions. Under conditions of acute stress, changes in the levels of O-GlcNAcylation of these proteins may have a defensive function. Nevertheless, deviant O-GlcNAcylation nullifies this safeguard and stimulates the advancement of several ailments, the prognosis of which relies on the cellular milieu. Hence, this review provides a concise overview of the function and comprehension of O-GlcNAcylation in ischemia diseases, aiming to facilitate the discovery of new therapeutic targets for efficient treatment, particularly in patients with diabetes.

9.
Nat Commun ; 15(1): 4376, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782890

ABSTRACT

Topologically associating domains (TADs), megabase-scale features of chromatin spatial architecture, are organized in a domain-within-domain TAD hierarchy. Within TADs, the inner and smaller subTADs not only manifest cell-to-cell variability, but also precisely regulate transcription and differentiation. Although over 20 TAD callers are able to detect TAD, their usability in biomedicine is confined by a disagreement of outputs and a limit in understanding TAD hierarchy. We compare 13 computational tools across various conditions and develop a metric to evaluate the similarity of TAD hierarchy. Although outputs of TAD hierarchy at each level vary among callers, data resolutions, sequencing depths, and matrices normalization, they are more consistent when they have a higher similarity of larger TADs. We present comprehensive benchmarking of TAD hierarchy callers and operational guidance to researchers of life science researchers. Moreover, by simulating the mixing of different types of cells, we confirm that TAD hierarchy is generated not simply from stacking Hi-C heatmaps of heterogeneous cells. Finally, we propose an air conditioner model to decipher the role of TAD hierarchy in transcription.


Subject(s)
Benchmarking , Chromatin , Chromatin/chemistry , Humans , Computational Biology/methods , Software , Chromatin Assembly and Disassembly
10.
Hepatobiliary Surg Nutr ; 13(2): 198-213, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617471

ABSTRACT

Background: Adequate evaluation of degrees of liver cirrhosis is essential in surgical treatment of hepatocellular carcinoma (HCC) patients. The impact of the degrees of cirrhosis on prediction of post-hepatectomy liver failure (PHLF) remains poorly defined. This study aimed to construct and validate a combined pre- and intra-operative nomogram based on the degrees of cirrhosis in predicting PHLF in HCC patients using prospective multi-center's data. Methods: Consecutive HCC patients who underwent hepatectomy between May 18, 2019 and Dec 19, 2020 were enrolled at five tertiary hospitals. Preoperative cirrhotic severity scoring (CSS) and intra-operative direct liver stiffness measurement (DSM) were performed to correlate with the Laennec histopathological grading system. The performances of the pre-operative nomogram and combined pre- and intra-operative nomogram in predicting PHLF were compared with conventional predictive models of PHLF. Results: For 327 patients in this study, histopathological studies showed the rates of HCC patients with no, mild, moderate, and severe cirrhosis were 41.9%, 29.1%, 22.9%, and 6.1%, respectively. Either CSS or DSM was closely correlated with histopathological stages of cirrhosis. Thirty-three (10.1%) patients developed PHLF. The 30- and 90-day mortality rates were 0.9%. Multivariate regression analysis showed four pre-operative variables [HBV-DNA level, ICG-R15, prothrombin time (PT), and CSS], and one intra-operative variable (DSM) to be independent risk factors of PHLF. The pre-operative nomogram was constructed based on these four pre-operative variables together with total bilirubin. The combined pre- and intra-operative nomogram was constructed by adding the intra-operative DSM. The pre-operative nomogram was better than the conventional models in predicting PHLF. The prediction was further improved with the combined pre- and intra-operative nomogram. Conclusions: The combined pre- and intra-operative nomogram further improved prediction of PHLF when compared with the pre-operative nomogram. Trial Registration: Clinicaltrials.gov Identifier: NCT04076631.

11.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38629796

ABSTRACT

Neuroimaging studies have shown that the neural representation of imagery is closely related to the perception modality; however, the undeniable different experiences between perception and imagery indicate that there are obvious neural mechanism differences between them, which cannot be explained by the simple theory that imagery is a form of weak perception. Considering the importance of functional integration of brain regions in neural activities, we conducted correlation analysis of neural activity in brain regions jointly activated by auditory imagery and perception, and then brain functional connectivity (FC) networks were obtained with a consistent structure. However, the connection values between the areas in the superior temporal gyrus and the right precentral cortex were significantly higher in auditory perception than in the imagery modality. In addition, the modality decoding based on FC patterns showed that the FC network of auditory imagery and perception can be significantly distinguishable. Subsequently, voxel-level FC analysis further verified the distribution regions of voxels with significant connectivity differences between the 2 modalities. This study complemented the correlation and difference between auditory imagery and perception in terms of brain information interaction, and it provided a new perspective for investigating the neural mechanisms of different modal information representations.


Subject(s)
Auditory Cortex , Brain Mapping , Brain Mapping/methods , Imagination , Brain/diagnostic imaging , Auditory Perception , Cerebral Cortex , Magnetic Resonance Imaging/methods , Auditory Cortex/diagnostic imaging
12.
Stem Cells Dev ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38661524

ABSTRACT

Age-related osteoporosis is characterized by an imbalance between osteogenic and adipogenic differentiation in bone mesenchymal stem cells (BMSCs). Forkhead box O 3 (FoxO3) transcription factor is involved in lifespan and cell differentiation. In this study, we explore whether FoxO3 regulates age-related bone loss and marrow fat accumulation. The expression levels of FoxO3 in BMSCs during aging were detected in vivo and in vitro. To explore the role of FoxO3 in osteogenic and adipogenic differentiation, primary BMSCs were isolated from young and aged mice. FoxO3 expression was modulated by adenoviral vector transfection. The role of FoxO3 in bone-fat balance was evaluated by alizarin red S staining, oil red O staining, quantitative reverse transcription-polymerase chain reaction, Western blot, and histological analysis. Age-related bone loss and fat deposit are associated with downregulation of FoxO3. Overexpression of FoxO3 alleviated age-related bone loss and marrow fat accumulation in aged mice. Mechanistically, FoxO3 reduced adipogenesis and enhanced osteogenesis of BMSCs via downregulation of PPAR-γ and Notch signaling, respectively. In conclusion, FoxO3 is an essential factor controlling the fate of BMSCs and is a potential target for the prevention of age-related osteoporosis.

13.
Nat Commun ; 15(1): 3382, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643164

ABSTRACT

Cancer models play critical roles in basic cancer research and precision medicine. However, current in vitro cancer models are limited by their inability to mimic the three-dimensional architecture and heterogeneous tumor microenvironments (TME) of in vivo tumors. Here, we develop an innovative patient-specific lung cancer assembloid (LCA) model by using droplet microfluidic technology based on a microinjection strategy. This method enables precise manipulation of clinical microsamples and rapid generation of LCAs with good intra-batch consistency in size and cell composition by evenly encapsulating patient tumor-derived TME cells and lung cancer organoids inside microgels. LCAs recapitulate the inter- and intratumoral heterogeneity, TME cellular diversity, and genomic and transcriptomic landscape of their parental tumors. LCA model could reconstruct the functional heterogeneity of cancer-associated fibroblasts and reflect the influence of TME on drug responses compared to cancer organoids. Notably, LCAs accurately replicate the clinical outcomes of patients, suggesting the potential of the LCA model to predict personalized treatments. Collectively, our studies provide a valuable method for precisely fabricating cancer assembloids and a promising LCA model for cancer research and personalized medicine.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Tumor Microenvironment , Organoids/pathology , Precision Medicine/methods
14.
Zhongguo Gu Shang ; 37(3): 251-7, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38515411

ABSTRACT

OBJECTIVE: To investigate clinical effect of tendons pulling,poking and kneading for the treatment of external humeral epicondylitis. METHODS: From January 2018 to December 2021,a multicenter randomized controlled study was performed to collect 192 patients with external humeral epicondylitis in Wangjing Hospital,Beijing Dianli Hospital,and Beijing Fengsheng Osteotraumatology Hospital,respectively,and they were divided into treatment group and control group by random number table method. There were 96 patients in treatment group,including 36 males and 60 females,aged from 28 to 60 years old with an average of (41.20±5.50) years old;the course of disease ranged from 1 to 14 days with an average of (5.24±1.35) days;they were treated once every other day for 2 weeks. There were 96 patients in control group ,including 33 males and 63 females,aged from 26 to 60 years old with an average of (43.35±7.75) years old;the course of disease ranged from 1 to 14 days with an average of (5.86±1.48) days;they were treated with topical voltaalin combined with elbow joint fixation for 2 weeks. Visual analogue scale (VAS) and Hospital for Surgery Scoring System (HSS) elbow pronation and supination angles,wrist metacarpal flexion and dorsal extension angles,elbow tenderness between two groups were compared before treatment and at 1,3,5,7,11 and 13 days after treatment;Hospital for Surgery Scoring System 2 (HSS2) was compared before treatment and the final treatment. RESULTS: All patients were followed up for 10 to 14 days with an average of (12±1.6) days. VAS between treatment group and control group before treatment were 6.83±1.36 and 6.79±1.58,respectively,and decreased to 1.49±1.09 and 2.11±1.81 after the final treatment. VAS of treatment group were significantly lower than those of control group at 1,3,5,7,9,11 and 13 days after treatment (P<0.05). HSS between two groups were 61.73±11.00 and 36.47±12.45 before treatment,respectively,and increased to 94.42±5.9 and 91.44±9.11 at the final treatment. HSS of treatment group were significantly higher than those of control group at 1,3,5,7,9,11 and 13 days after treatment (P<0.05). On the 5th day after treatment,the external and internal rotation angles of elbow in treatment group were (66.41±12.69) ° and (66.35±13.54) °,while those in control group were (62.08±16.03) ° and (61.77±16.35) °. On the 7th day after treatment,the external and internal rotation angles of elbow were (69.79±12.64) ° and (70.02±13.55) ° in treatment group,and (65.28±15.86) ° and (65.09±16.67) ° in control group. Elbow joint motion in treatment group was higher than that in control group (P<0.05). On the 5th day after treatment,angles of wrist dorsiflexion and palm flexion were (39.43±15.94) ° and (46.68±11.10) ° in treatment group,and (38.51±18.49) ° and (44.27±13.58) ° in control group. On the 7th day after treatment,angles of wrist dorsiflexion and palm flexion were (42.52±16.50) ° and (49.23±10.96) ° in treatment group,and (41.18±20.09) ° and (46.64±14.63) ° in control group. The motion of wrist joint in treatment group was higher than that in control group (P<0.05). On the 13th day after treatment,HSS2 in treatment group 93.61±6.32 were higher than those in control group 92.06±7.94(P<0.05). There was no significant difference in elbow tenderness between two groups at each time point (P>0.05). CONCLUSION: Voltaren external treatment combined with elbow fixation and tendons pulling,poking and kneading could effectively improve symptoms of external humeral epicondylitis. Compared with voltaren external treatment,tendons pulling,poking and kneading has advantages of longer analgesic time and better elbow function recovery.


Subject(s)
Elbow Joint , Tennis Elbow , Male , Female , Humans , Adult , Middle Aged , Tennis Elbow/therapy , Diclofenac , Treatment Outcome , Humerus/surgery , Elbow , Elbow Joint/surgery , Range of Motion, Articular , Retrospective Studies
15.
J Microbiol Methods ; 219: 106894, 2024 04.
Article in English | MEDLINE | ID: mdl-38325717

ABSTRACT

The multidrug resistance of nontuberculous mycobacteria (NTM) poses a significant therapeutic challenge. Rapid and reliable drug susceptibility testing is urgently needed for evidence-based treatment decision, especially for macrolides. This study evaluated the utility of nucleotide matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (NMTMS) in detecting clarithromycin resistance. Sixty-four clinical isolates were identified to species by NMTMS, and mutations associated with clarithromycin resistance were detected. Twenty-three M. abscessus (MAB) isolates and 30 M. intracellulare isolates (including M. intracellulare alone and M. intracellulare in combination with other SGM species) were included for analysis. The predictive sensitivity of NMTMS in detecting clarithromycin resistance was 82.35% (95% CI, 56.57% to 96.20%), with an AUC of 0.89 (95% CI, 0.77 to 0.96) in all MAB and M. intracellulare (n = 53), and up to 93.33% (95% CI, 68.05% to 99.83%) in MAB alone (n = 23). The assay provides a rapid, high-throughput, and highly sensitive tool for detecting clarithromycin resistance in NTM, especially in MAB. Optimization of the panel is necessary to enhance diagnostic accuracy.


Subject(s)
Mycobacterium Infections, Nontuberculous , Mycobacterium tuberculosis , Humans , Nontuberculous Mycobacteria , Clarithromycin/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Mycobacterium Infections, Nontuberculous/diagnosis , Microbial Sensitivity Tests
16.
Nature ; 627(8004): 586-593, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38355797

ABSTRACT

Over half of hepatocellular carcinoma (HCC) cases diagnosed worldwide are in China1-3. However, whole-genome analysis of hepatitis B virus (HBV)-associated HCC in Chinese individuals is limited4-8, with current analyses of HCC mainly from non-HBV-enriched populations9,10. Here we initiated the Chinese Liver Cancer Atlas (CLCA) project and performed deep whole-genome sequencing (average depth, 120×) of 494 HCC tumours. We identified 6 coding and 28 non-coding previously undescribed driver candidates. Five previously undescribed mutational signatures were found, including aristolochic-acid-associated indel and doublet base signatures, and a single-base-substitution signature that we termed SBS_H8. Pentanucleotide context analysis and experimental validation confirmed that SBS_H8 was distinct to the aristolochic-acid-associated SBS22. Notably, HBV integrations could take the form of extrachromosomal circular DNA, resulting in elevated copy numbers and gene expression. Our high-depth data also enabled us to characterize subclonal clustered alterations, including chromothripsis, chromoplexy and kataegis, suggesting that these catastrophic events could also occur in late stages of hepatocarcinogenesis. Pathway analysis of all classes of alterations further linked non-coding mutations to dysregulation of liver metabolism. Finally, we performed in vitro and in vivo assays to show that fibrinogen alpha chain (FGA), determined as both a candidate coding and non-coding driver, regulates HCC progression and metastasis. Our CLCA study depicts a detailed genomic landscape and evolutionary history of HCC in Chinese individuals, providing important clinical implications.


Subject(s)
Carcinoma, Hepatocellular , Genome, Human , High-Throughput Nucleotide Sequencing , Liver Neoplasms , Mutation , Whole Genome Sequencing , Humans , Aristolochic Acids/metabolism , Carcinogenesis , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , China , Chromothripsis , Disease Progression , DNA, Circular/genetics , East Asian People/genetics , Evolution, Molecular , Genome, Human/genetics , Hepatitis B virus/genetics , INDEL Mutation/genetics , Liver/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/virology , Mutation/genetics , Neoplasm Metastasis/genetics , Open Reading Frames/genetics , Reproducibility of Results
17.
Cell Stem Cell ; 31(3): 341-358.e7, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38402618

ABSTRACT

Liver injuries often occur in a zonated manner. However, detailed regenerative responses to such zonal injuries at cellular and molecular levels remain largely elusive. By using a fate-mapping strain, Cyp2e1-DreER, to elucidate liver regeneration after acute pericentral injury, we found that pericentral regeneration is primarily compensated by the expansion of remaining pericentral hepatocytes, and secondarily by expansion of periportal hepatocytes. Employing single-cell RNA sequencing, spatial transcriptomics, immunostaining, and in vivo functional assays, we demonstrated that the upregulated expression of the mTOR/4E-BP1 axis and lactate dehydrogenase A in hepatocytes contributes to pericentral regeneration, while activation of transforming growth factor ß (TGF-ß1) signaling in the damaged area mediates fibrotic responses and inhibits hepatocyte proliferation. Inhibiting the pericentral accumulation of monocytes and monocyte-derived macrophages through an Arg-Gly-Asp (RGD) peptide-based strategy attenuates these cell-derived TGF-ß1 signalings, thus improving pericentral regeneration. Our study provides integrated and high-resolution spatiotemporal insights into the cellular and molecular basis of pericentral regeneration.


Subject(s)
Liver Regeneration , Transforming Growth Factor beta1 , Liver Regeneration/physiology , Transforming Growth Factor beta1/metabolism , Liver , Hepatocytes/metabolism , Cell Proliferation
18.
Front Med (Lausanne) ; 11: 1335758, 2024.
Article in English | MEDLINE | ID: mdl-38384414

ABSTRACT

Objective: This study aimed to identify clinical characteristics associated with the prevalence of progressive pulmonary fibrosis (PPF) in interstitial lung disease (ILD) and to develop a prognostic nomogram model for clinical use. Methods: In this single-centered, retrospective study, we enrolled ILD patients with relatively comprehensive clinical data and assessed the incidence of PPF within a year using collected demographics, laboratory data, high-resolution computed tomography (HRCT), and pulmonary function test (PFT) results. We used a training cohort of ILD patients to identify early predictors of PPF and then validated them in an internal validation cohort and subsets of ILD patients using a multivariable logistic regression analysis. A prognostic nomogram was formulated based on these predictors, and the accuracy and efficiency were evaluated using the area under the receiver operating characteristic curve (AUC), calibration plot, and decision curve analysis (DCA). Results: Among the enrolled patients, 120 (39.09%) cases had connective tissue disease-associated interstitial lung disease (CTD-ILD), 115 (37.46%) had non-idiopathic pulmonary fibrosis idiopathic interstitial pneumonia (non-IPF IIP), and 35 (11.4%) had hypersensitivity pneumonitis (HP). Overall, 118 (38.4%) cases experienced pulmonary fibrosis progression. We found that baseline DLco% pred (OR 0.92; 95% CI, 8.93-0.95) was a protective factor for ILD progression, whereas combined pneumonia (OR 4.57; 95% CI, 1.24-18.43), modified Medical Research Council dyspnea score (mMRC) (OR 4.9; 95% CI, 2.8-9.5), and high-resolution computed tomography (HRCT) score (OR 1.22; 95% CI, 1.07-1.42) were independent risk factors for PPF. The AUC of the proposed nomogram in the development cohort was 0.96 (95% CI, 0.94, 0.98), and the calibration plot showed good agreement between the predicted and observed incidence of PPF (Hosmer-Lemeshow test: P = 0.86). Conclusion: ILD patients with combined pneumonia, low baseline DLco% pred, high mMRC marks, and high HRCT scores were at higher risk of progression. This nomogram demonstrated good discrimination and calibration, indicating its potential utility for clinical practice.

19.
BMC Med Imaging ; 24(1): 40, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347469

ABSTRACT

PURPOSE: Both of extracellular extravascular volume (EEV) and extracellular volume fraction (ECV) were proposed to quantify enlargement of myocardial interstitial space due to myocardium loss or fibrosis. The study aimed to investigate the feasibility of using EEV derived from myocardial computed tomography (CT) perfusion imaging (VPCT) and extracellular volume quantification with single-energy subtraction CT (ECV- SECT) for quantifying myocardial fibrosis. METHODS: In this study, 17 patients with suspected and known coronary artery disease underwent examination using a dual-source CT scanner. The EEV- VPCT was derived from dynamic whole-heart myocardial perfusion imaging, and the ECV_SECT was calculated from late-enhanced images 5 min after bolus contrast injection by subtracting the noncontrast baseline. The late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) imaging was used as a reference. RESULTS: In total, 11 patients and 73 segments exhibited positivity for LGE on CMR imaging. These were classified into three groups according to the segments: fibrotic segments (group I, n = 73), nonfibrotic segments in LGE-positive patients (group II, n = 103), and segments in LGE-negative patients (group III, n = 80). ECV- SECT, EEV- VPCT, myocardial blood flow (MBF), and myocardial blood volume (MBV) significantly differed among these groups (all P < 0.05). ECV- SECT was significantly higher and EEV- VPCT, MBF, and MBV were significantly lower in fibrotic myocardial segments than in nonfibrotic ones (all P < 0.01). ECV- SECT and EEV- VPCT independently affected myocardial fibrosis. There was no significant correlation between ECV- SECT and EEV- VPCT. The capability of EEV- VPCT to diagnose myocardial fibrosis was equivalent to that of ECV- SECT (area under the curve: 0.798 vs. 0.806, P = 0.844). ECV- SECT of > 41.2% and EEV- VPCT of < 10.3% indicated myocardial fibrosis. CONCLUSIONS: EEV- VPCT is actually first-pass distribution volume that can feasibly be used to quantify myocardial fibrosis. Furthermore, the diagnostic efficacy of EEV- VPCT is comparable to that of ECV- SECT.


Subject(s)
Cardiomyopathies , Myocardial Perfusion Imaging , Humans , Contrast Media , Myocardial Perfusion Imaging/methods , Gadolinium , Myocardium/pathology , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Fibrosis , Predictive Value of Tests , Magnetic Resonance Imaging, Cine/methods
20.
Front Oncol ; 14: 1335678, 2024.
Article in English | MEDLINE | ID: mdl-38380362

ABSTRACT

Background: Mucinous adenocarcinoma (MAC) is a unique subtype of colorectal cancer and its prognostic value remains controversial. This study aimed to compare the clinicopathological characteristics and prognostic differences between patients with MAC and non-mucinous adenocarcinoma (NMAC). Methods: 674 patients with NMAC, 110 patients with adenocarcinoma with mucinous component (ACWM) and 77 patients with MAC between 2016-2019 were enrolled in the study. Univariate and multivariate Cox regression were performed to analyze the factors associated with prognosis. Predictive nomograms of overall survival (OS) and cancer-specific survival (CSS) for patients with colorectal adenocarcinoma were constructed. Confounding factors were eliminated by propensity score matching (PSM). Results: Compared with patients with NMAC, patients with MAC were more likely to have a tumor located at the proximal colon, present with a larger tumor diameter, more advanced T stage, higher frequency of metastasis, deficiency of mismatch repair, and elevated preoperative carcinoembryonic antigen. Patients with MAC were related to worse OS (HR=2.53, 95%CI 1.73-3.68, p<0.01) and CSS (HR=3.09, 95%CI 2.10-4.57, p<0.01), which persisted after PSM. Subgroup analysis demonstrated that patients with left-sided or stage III/IV MAC exhibited a comparatively worse OS and CSS than those with NMAC. Furthermore, in patients with stage II with a high-risk factor and stage III MAC, adjuvant chemotherapy was associated with an improved OS, CSS, and RFS. Conclusion: Compared with the NMAC phenotype, the MAC phenotype was an independent risk factor for poor prognosis in colorectal adenocarcinoma with worse OS and CSS, particularly patients with left-sided colorectal cancer and stage III/IV. However, patients with MAC can still benefit from adjuvant chemotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL