Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 334
Filter
1.
J Transl Med ; 22(1): 633, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978106

ABSTRACT

BACKGROUND: Pancreatic cancer is one of the most lethal malignancies and the lack of treatment options makes it more deadly. Chimeric Antigen Receptor T-cell (CAR-T) immunotherapy has revolutionized cancer treatment and made great breakthroughs in treating hematological malignancies, however its success in treating solid cancers remains limited mainly due to the lack of tumor-specific antigens. On the other hand, the prolonged traditional manufacturing process poses challenges, taking 2 to 6 weeks and impacting patient outcomes. CD276 has recently emerged as a potential therapeutic target for anti-solid cancer therapy. Here, we investigated the efficacy of CD276 CAR-T and rapidly-manufactured CAR-T against pancreatic cancer. METHODS: In the present study, CD276 CAR-T was prepared by CAR structure carrying 376.96 scFv sequence, CD8 hinge and transmembrane domain, 4-1BB and CD3ζ intracellular domains. Additionally, CD276 rapidly-manufactured CAR-T (named CD276 Dash CAR-T) was innovatively developed by shortening the duration of ex vitro culture to reduce CAR-T manufacturing time. We evaluated the anti-tumor efficacy of CD276 CAR-T and further compared the functional assessment of Dash CAR-T and conventional CAR-T in vitro and in vivo by detecting the immunophenotypes, killing ability, expansion capacity and tumor-eradicating effect of CAR-T. RESULTS: We found that CD276 was strongly expressed in multiple solid cancer cell lines and that CD276 CAR-T could efficiently kill these solid cancer cells. Moreover, Dash CAR-T was successfully manufactured within 48-72 h and the functional validation was carried out subsequently. In vitro, CD276 Dash CAR-T possessed a less-differentiated phenotype and robust proliferative ability compared to conventional CAR-T. In vivo xenograft mouse model, CD276 Dash CAR-T showed enhanced anti-pancreatic cancer efficacy and T cell expansion. Besides, except for the high-dose group, the body weight of mice was maintained stable, and the state of mice was normal. CONCLUSIONS: In this study, we proved CD276 CAR-T exhibited powerful activity against pancreatic cancer cells in vitro and in vivo. More importantly, we demonstrated the manufacturing feasibility, acceptable safety and superior anti-tumor efficacy of CD276 Dash CAR-T generated with reduced time. The results of the above studies indicated that CD276 Dash CAR-T immunotherapy might be a novel and promising strategy for pancreatic cancer treatment.


Subject(s)
B7 Antigens , Immunotherapy, Adoptive , Pancreatic Neoplasms , Receptors, Chimeric Antigen , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Humans , Animals , Cell Line, Tumor , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Immunotherapy, Adoptive/methods , B7 Antigens/metabolism , B7 Antigens/immunology , Xenograft Model Antitumor Assays , Mice , Cell Proliferation , T-Lymphocytes/immunology
2.
Ageing Res Rev ; 100: 102428, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038742

ABSTRACT

Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.

3.
Front Immunol ; 15: 1302909, 2024.
Article in English | MEDLINE | ID: mdl-38846934

ABSTRACT

Background: Membranous nephropathy (MN) is an autoimmune disease and represents the most prevalent type of renal pathology in adult patients afflicted with nephrotic syndrome. Despite substantial evidence suggesting a possible link between MN and cancer, the precise underlying mechanisms remain elusive. Methods: In this study, we acquired and integrated two MN datasets (comprising a single-cell dataset and a bulk RNA-seq dataset) from the Gene Expression Omnibus database for differential expression gene (DEG) analysis, hub genes were obtained by LASSO and random forest algorithms, the diagnostic ability of hub genes was assessed using ROC curves, and the degree of immune cell infiltration was evaluated using the ssGSEA function. Concurrently, we gathered pan-cancer-related genes from the TCGA and GTEx databases, to analyze the expression, mutation status, drug sensitivity and prognosis of hub genes in pan-cancer. Results: We conducted intersections between the set of 318 senescence-related genes and the 366 DEGs, resulting in the identification of 13 senescence-related DEGs. Afterwards, we meticulously analyzed these genes using the LASSO and random forest algorithms, which ultimately led to the discovery of six hub genes through intersection (PIK3R1, CCND1, TERF2IP, SLC25A4, CAPN2, and TXN). ROC curves suggest that these hub genes have good recognition of MN. After performing correlation analysis, examining immune infiltration, and conducting a comprehensive pan-cancer investigation, we validated these six hub genes through immunohistochemical analysis using human renal biopsy tissues. The pan-cancer analysis notably accentuates the robust association between these hub genes and the prognoses of individuals afflicted by diverse cancer types, further underscoring the importance of mutations within these hub genes across various cancers. Conclusion: This evidence indicates that these genes could potentially play a pivotal role as a critical link connecting MN and cancer. As a result, they may hold promise as valuable targets for intervention in cases of both MN and cancer.


Subject(s)
Glomerulonephritis, Membranous , Humans , Glomerulonephritis, Membranous/genetics , Glomerulonephritis, Membranous/immunology , Glomerulonephritis, Membranous/diagnosis , Glomerulonephritis, Membranous/metabolism , Gene Expression Profiling , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Computational Biology/methods , Prognosis , Biomarkers, Tumor/genetics , Transcriptome , Gene Regulatory Networks , Biomarkers , Databases, Genetic
4.
Neural Netw ; 177: 106396, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38805798

ABSTRACT

Graph Neural Networks (GNNs) have demonstrated remarkable success in graph node classification task. However, their performance heavily relies on the availability of high-quality labeled data, which can be time-consuming and labor-intensive to acquire for graph-structured data. Therefore, the task of transferring knowledge from a label-rich graph (source domain) to a completely unlabeled graph (target domain) becomes crucial. In this paper, we propose a novel unsupervised graph domain adaptation framework called Structure Enhanced Prototypical Alignment (SEPA), which aims to learn domain-invariant representations on non-IID (non-independent and identically distributed) data. Specifically, SEPA captures class-wise semantics by constructing a prototype-based graph and introduces an explicit domain discrepancy metric to align the source and target domains. The proposed SEPA framework is optimized in an end-to-end manner, which could be incorporated into various GNN architectures. Experimental results on several real-world datasets demonstrate that our proposed framework outperforms recent state-of-the-art baselines with different gains.


Subject(s)
Neural Networks, Computer , Unsupervised Machine Learning , Algorithms , Semantics , Humans
5.
Heliyon ; 10(9): e30388, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756581

ABSTRACT

Objective: This study aimed to investigate the mechanism of long noncoding ribonucleic acid (lncRNA) SNHG16 on kidney clear cell carcinoma (KIRC) cells by targeting miR-506-3p/ETS proto-oncogene 1, transcription factor (ETS1)/RAS/Extracellular regulated protein kinases (ERK) molecular axis, thus to provide reference for clinical diagnosis and treatment of KIRC in the future. Methods: Thirty-six patients with KIRC were enrolled in this study, and their carcinoma tissues and adjacent tissues were obtained for the detection of SNHG16/miR-506-3p/ETS1/RAS/ERK expression. Then, over-expressed SNHG16 plasmid and silenced plasmid were transfected into KIRC cells to observe the changes of their biological behavior. Results: SNHG16 and ETS1 were highly expressed while miR-506- 3p was low expressed in KIRC tissues; the RAS/ERK signaling pathway was significantly activated in KIRC tissues (P < 0.05). After SNHG16 silence, KIRC cells showed decreased proliferation, invasion and migration capabilities and increased apoptosis rate; correspondingly, increase in SNHG16 expression achieved opposite results (P < 0.05). Finally, in the rescue experiment, the effects of elevated SNHG16 on KIRC cells were reversed by simultaneous increase in miR-506-3p, and the effects of miR-506-3p were reversed by ETS1. Activation of the RAS/ERK pathway had the same effect as increase in ETS1, which further worsened the malignancy of KIRC. After miR-506-3p increase and ETS1 silence, the RAS/ERK signaling pathway was inhibited (P < 0.05). At last, the rescue experiment (co-transfection) confirmed that the effect of SNHG16 on KIRC cells is achieved via the miR-506-3p/ETS1/RAS/ERK molecular axis. Conclusion: SNHG16 regulates the biological behavior of KIRC cells by targeting the miR-506-3p/ETS1/RAS/ERK molecular axis.

6.
Phys Rev Lett ; 132(12): 129202, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38579215
7.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612392

ABSTRACT

The glycocalyx is a proteoglycan-glycoprotein structure lining the luminal surface of the vascular endothelium and is susceptible to damage due to blast overpressure (BOP) exposure. The glycocalyx is essential in maintaining the structural and functional integrity of the vasculature and regulation of cerebral blood flow (CBF). Assessment of alterations in the density of the glycocalyx; its components (heparan sulphate proteoglycan (HSPG/syndecan-2), heparan sulphate (HS), and chondroitin sulphate (CS)); CBF; and the effect of hypercapnia on CBF was conducted at 2-3 h, 1, 3, 14, and 28 days after a high-intensity (18.9 PSI/131 kPa peak pressure, 10.95 ms duration, and 70.26 PSI·ms/484.42 kPa·ms impulse) BOP exposure in rats. A significant reduction in the density of the glycocalyx was observed 2-3 h, 1-, and 3 days after the blast exposure. The glycocalyx recovered by 28 days after exposure and was associated with an increase in HS (14 and 28 days) and in HSPG/syndecan-2 and CS (28 days) in the frontal cortex. In separate experiments, we observed significant decreases in CBF and a diminished response to hypercapnia at all time points with some recovery at 3 days. Given the role of the glycocalyx in regulating physiological function of the cerebral vasculature, damage to the glycocalyx after BOP exposure may result in the onset of pathogenesis and progression of cerebrovascular dysfunction leading to neuropathology.


Subject(s)
Heparan Sulfate Proteoglycans , Syndecan-2 , Animals , Rats , Glycocalyx , Hypercapnia , Cerebrovascular Circulation , Heparitin Sulfate , Chondroitin Sulfates
8.
Front Pharmacol ; 15: 1344113, 2024.
Article in English | MEDLINE | ID: mdl-38567351

ABSTRACT

Introduction: Diabetic kidney disease (DKD) necessitates innovative therapeutic strategies. This study delves into the role of DNA damage-inducing transcription factor 4 (DDIT4) within the VDR-mTOR pathway, aiming to identify a novel target for DKD drug discovery. Methods: Transcriptome data from the Gene Expression Omnibus Database were analyzed to assess the expression of mTOR and VDR expression in human renal tissues. Clinical samples from DKD patients and minimal change disease (MCD) controls were examined, and a DKD animal model using 20-week-old db/db mice was established. DDIT4 plasmid transfection was employed to modulate the VDR-mTOR pathway, with its components evaluated using immunohistochemistry, real-time quantitative PCR (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). Results: Changes in the expression of the VDR-mTOR pathway were observed in both DKD patients and the animal model. Overexpression of DDIT4 increased VDR expression and decreased levels of mTOR, p70s6k, and 4E-BP1. Furthermore, DDIT4 treatment regulated autophagy by upregulating LC3I expression and downregulating LC3II expression. Notably, DDIT4 alleviated oxidative stress by reducing the levels of lipid peroxidation product MDA, while simultaneously increasing the levels of superoxide dismutase (SOD) and glutathione (GSH), underscoring the role of DDIT4 in the pathological process of DKD and its potential as a therapeutic target. Conclusion: Unraveling DDIT4's involvement in the VDR-mTOR pathway provides insights for innovative DKD drug discovery, emphasizing its potential as a therapeutic target for future interventions.

9.
Yi Chuan ; 46(3): 219-231, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38632100

ABSTRACT

CRISPR/Cas9 gene editing technology, as a highly efficient genome editing method, has been extensively employed in the realm of animal husbandry for genetic improvement. With its remarkable efficiency and precision, this technology has revolutionized the field of animal husbandry. Currently, CRISPR/Cas9-based gene knockout, gene knock-in and gene modification techniques are widely employed to achieve precise enhancements in crucial production traits of livestock and poultry species. In this review, we summarize the operational principle and development history of CRISPR/Cas9 technology. Additionally, we highlight the research advancements utilizing this technology in muscle growth and development, fiber growth, milk quality composition, disease resistance breeding, and animal welfare within the livestock and poultry sectors. Our aim is to provide a more comprehensive understanding of the application of CRISPR/Cas9 technology in gene editing for livestock and poultry.


Subject(s)
CRISPR-Cas Systems , Livestock , Animals , Livestock/genetics , Poultry/genetics , Gene Editing/methods , Gene Knock-In Techniques
10.
Chin Med ; 19(1): 41, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38439080

ABSTRACT

BACKGROUND: LanGui tea, a traditional Chinese medicine formulation comprising of Gynostemma pentaphyllum (Thunb.) Makino, Cinnamomum cassia (L.) J. Presl, and Ampelopsis grossedentata (Hand-Mazz) W.T. Wang, has yet to have its potential contributions to alcoholic liver disease (ALD) fully elucidated. Consequently, the objective of this research is to investigate the protective properties of LanGui tea against binge alcohol-induced ALD and the mechanisms underlying its effects. METHODS: An experimental model of acute alcohol-induced liver disease was performed to assess the protective effects of extract of LanGui tea (ELG) at both 50 and 100 mg.kg-1 dosages on male C57BL/6 mice. Various parameters, including hepatic histological changes, inflammation, lipids content, as well as liver enzymes and interleukin 1ß (IL-1ß) in the serum were measured. The pharmacological mechanisms of ELG, specifically its effects on adenosine monophosphate-(AMP)-activated protein kinase (AMPK) and NLR family pyrin domain containing 3 (NLRP3) signaling, were investigated through Western blotting, qRT-PCR, ELISA, immunohistochemistry, immunofluorescence analyses, and by blocking the AMPK activity. RESULTS: ELG demonstrated a mitigating effect on fatty liver, inflammation, and hepatic dysfunction within the mouse model. This effect was achieved by activating AMPK signaling and inhibitingNLRP3 signaling in the liver, causing a reduction in IL-1ß generation. In vitro studies further confirmed that ELG inhibited cell damage and IL-1ß production in ethanol-induced hepatocytes by enhancing AMPK-NLRP3 signaling. Conversely, the pharmacological inhibition of AMPK activity nearly abrogated such alteration. CONCLUSIONS: Thus, LanGui tea emerges as a promising herbal therapy for ALD management involving AMPK-NLRP3 signaling.

11.
Small ; 20(28): e2311001, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38342582

ABSTRACT

Small-scale soft robots demonstrate intricate life-like behavior and allow navigation through arduous terrains and confined spaces. However, the primary challenges in soft robotics are 1) creating actuators capable of quick, reversible 22D-to-3D shape morphing with adjustable stiffness, 2) improving actuation force and robustness for wider applications, and 3) designing holistic systems for untethered manipulation and flexible multimodality in practical scenarios. Here, mechanically compliant paper-like robots are presented with multiple functionalities. The robots are based on photothermally activated polymer bimorph actuators that incorporate graphene for the photo-thermal conversion of energy and muscovite mica, with its high Young's modulus, providing the required stiffness. Conversion of light into heat leads to thermal expansion and bending of the stress-mismatched structures. The actuators are designed on the basis of a modified Timoshenko model, and numerical simulations are employed to evaluate their actuation performance. The membranes can be utilized for light-driven programmable shape-morphing. Localized control allows the implementation of active hinges at arbitrary positions within the membrane. Integrated into small-scale soft robots in mass production, the membrane facilitates locomotion, rolling, and flipping of the robots. Further, grasping and kicking mechanisms are demonstrated, highlighting the potential of such actuators for future applications.

12.
Cancer Lett ; 588: 216738, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38401887

ABSTRACT

The gastrointestinal tract can be affected by a number of diseases that pancreatic cancer (PC) is a malignant manifestation of them. The prognosis of PC patients is unfavorable and because of their diagnosis at advanced stage, the treatment of this tumor is problematic. Owing to low survival rate, there is much interest towards understanding the molecular profile of PC in an attempt in developing more effective therapeutics. The conventional therapeutics for PC include surgery, chemotherapy and radiotherapy as well as emerging immunotherapy. However, PC is still incurable and more effort should be performed. The molecular landscape of PC is an underlying factor involved in increase in progression of tumor cells. In the presence review, the newest advances in understanding the molecular and biological events in PC are discussed. The dysregulation of molecular pathways including AMPK, MAPK, STAT3, Wnt/ß-catenin and non-coding RNA transcripts has been suggested as a factor in development of tumorigenesis in PC. Moreover, cell death mechanisms such as apoptosis, autophagy, ferroptosis and necroptosis demonstrate abnormal levels. The EMT and glycolysis in PC cells enhance to ensure their metastasis and proliferation. Furthermore, such abnormal changes have been used to develop corresponding pharmacological and nanotechnological therapeutics for PC.


Subject(s)
Pancreatic Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Apoptosis , Prognosis
13.
J Neurotrauma ; 41(5-6): 685-704, 2024 03.
Article in English | MEDLINE | ID: mdl-38183627

ABSTRACT

The long-term effects of exposure to blast overpressure are an important health concern in military personnel. Increase in amyloid beta (Aß) has been documented after non-blast traumatic brain injury (TBI) and may contribute to neuropathology and an increased risk for Alzheimer's disease. We have shown that Aß levels decrease following exposure to a low-intensity blast overpressure event. To further explore this observation, we examined the effects of a single 37 kPa (5.4 psi) blast exposure on brain Aß levels, production, and clearance mechanisms in the acute (24 h) and delayed (28 days) phases post-blast exposure in an experimental rat model. Aß and, notably, the highly neurotoxic detergent soluble Aß42 form, was reduced at 24 h but not 28 days after blast exposure. This reduction was not associated with changes in the levels of Aß oligomers, expression levels of amyloid precursor protein (APP), or increase in enzymes involved in the amyloidogenic cleavage of APP, the ß- and ϒ-secretases BACE1 and presenilin-1, respectively. The levels of ADAM17 α-secretase (also known as tumor necrosis factor α-converting enzyme) decreased, concomitant with the reduction in brain Aß. Additionally, significant increases in brain levels of the endothelial transporter, low-density related protein 1 (LRP1), and enhancement in co-localization of aquaporin-4 (AQP4) to perivascular astrocytic end-feet were observed 24 h after blast exposure. These findings suggest that exposure to low-intensity blast may enhance endothelial clearance of Aß by LRP1-mediated transcytosis and alter AQP4-aided glymphatic clearance. Collectively, the data demonstrate that low-intensity blast alters enzymatic, transvascular, and perivascular clearance of Aß.


Subject(s)
Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Animals , Rats , Aspartic Acid Endopeptidases , Brain , Amyloid beta-Protein Precursor , Aquaporin 4
14.
Nat Commun ; 15(1): 502, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218905

ABSTRACT

Topologically associating domains (TADs) are critical structural units in three-dimensional genome organization of mammalian genome. Dynamic reorganizations of TADs between health and disease states are associated with essential genome functions. However, computational methods for identifying reorganized TADs are still in the early stages of development. Here, we present DiffDomain, an algorithm leveraging high-dimensional random matrix theory to identify structurally reorganized TADs using high-throughput chromosome conformation capture (Hi-C) contact maps. Method comparison using multiple real Hi-C datasets reveals that DiffDomain outperforms alternative methods for false positive rates, true positive rates, and identifying a new subtype of reorganized TADs. Applying DiffDomain to Hi-C data from different cell types and disease states demonstrates its biological relevance. Identified reorganized TADs are associated with structural variations and epigenomic changes such as changes in CTCF binding sites. By applying to a single-cell Hi-C data from mouse neuronal development, DiffDomain can identify reorganized TADs between cell types with reasonable reproducibility using pseudo-bulk Hi-C data from as few as 100 cells per condition. Moreover, DiffDomain reveals differential cell-to-population variability and heterogeneous cell-to-cell variability in TADs. Therefore, DiffDomain is a statistically sound method for better comparative analysis of TADs using both Hi-C and single-cell Hi-C data.


Subject(s)
Chromosomes , Genome , Animals , Mice , Reproducibility of Results , Binding Sites , Molecular Conformation , Chromatin/genetics , Mammals/genetics
15.
Phys Rev Lett ; 131(16): 161803, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37925712

ABSTRACT

Optical frequency metrology in atoms and ions can probe hypothetical fifth forces between electrons and neutrons by sensing minute perturbations of the electronic wave function induced by them. A generalized King plot has been proposed to distinguish them from possible standard model effects arising from, e.g., finite nuclear size and electronic correlations. Additional isotopes and transitions are required for this approach. Xenon is an excellent candidate, with seven stable isotopes with zero nuclear spin, however it has no known visible ground-state transitions for high resolution spectroscopy. To address this, we have found and measured twelve magnetic-dipole lines in its highly charged ions and theoretically studied their sensitivity to fifth forces as well as the suppression of spurious higher-order standard model effects. Moreover, we identified at 764.8753(16) nm a E2-type ground-state transition with 500 s excited state lifetime as a potential clock candidate further enhancing our proposed scheme.

16.
Immunity ; 56(12): 2773-2789.e8, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37992711

ABSTRACT

Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.


Subject(s)
Autoimmune Diseases of the Nervous System , Multiple Sclerosis , Male , Female , Mice , Animals , Multiple Sclerosis/metabolism , Disease Models, Animal , Signal Transduction , Disease Progression , Receptors, Dopamine
17.
BMC Genomics ; 24(1): 720, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017403

ABSTRACT

BACKGROUND: Numerous factors influence the growth and development of cashmere. Existing research on cashmere has predominantly emphasized a single omics level. Integrating multi-omics analyses can offer a more comprehensive understanding by encompassing the entire spectrum. This study more accurately and comprehensively identified the key factors influencing cashmere fineness using multi-omics analysis. METHODS: This study used skin tissues of coarse cashmere type (CT_LCG) and fine cashmere type Liaoning cashmere goats (FT_LCG) for the analysis. This study employed an integrated approach involving transcriptomics, translatomics, proteomics, and metabolomics to identify substances associated with cashmere fineness. The findings were validated using parallel reaction monitoring (PRM) and multiple reaction monitoring (MRM) techniques. RESULTS: The GO functional enrichment analysis identified three common terms: multicellular organismal process, immune system process, and extracellular region. Furthermore, the KEGG enrichment analysis uncovered the involvement of the arachidonic acid metabolic pathway. Protein expression trends were verified using PRM technology. The expression trends of KRT79, as confirmed by PRM, were consistent with those observed in TMT proteomics and exhibited a positive regulatory effect on cashmere fineness. Metabolite expression trends were confirmed using MRM technology. The expression trends of 9 out of 15 validated metabolites were in agreement with those identified in the non-targeted metabolomics analysis. CONCLUSIONS: This study employed multi-omics analysis to identify key regulators of cashmere fineness, including PLA2G12A, KRT79, and prostaglandin B2. The findings of this study offer valuable data and establish a theoretical foundation for conducting comprehensive investigations into the molecular regulatory mechanisms and functional aspects of cashmere fineness.


Subject(s)
Multiomics , Skin , Animals , Skin/metabolism , Goats/genetics
18.
Article in English | MEDLINE | ID: mdl-37889609

ABSTRACT

Lithium-sulfur (Li-S) batteries hold great promise as next-generation high-energy storage devices owing to the high theoretical specific capacity of sulfur, but polysulfide shuttling and lithium dendrite growth remain key challenges limiting cycling life. In this work, we propose a polyacrylonitrile-derived asymmetric (PDA) separator to enhance Li-S battery performance by accelerating sulfur redox kinetics and guiding lithium plating and stripping. A PDA separator was constructed from two layers: the cathode-facing side consists of polyacrylonitrile nanofibers carbonized at 800 °C and doped with titanium nitride, which can achieve rapid polysulfide conversion via electrocatalysis to suppress their shuttling; the anode-facing side consists of polyacrylonitrile oxidized at 280 °C, on which the abundant electronegative groups guide uniform lithium ion plating and stripping. Li-S batteries assembled with the PDA separator exhibited enhanced rate performance, cycling stability, and sulfur utilization, retaining 426 mA h g-1 capacity at 1 C over 1000 cycles and 632 mA h g-1 at 4 C over 200 cycles. Attractively, the PDA separator showed high thermal stability, which could mitigate the risk of internal short circuits and thermal runaway. This work demonstrates an original path to addressing the most critical issues with Li-S batteries.

19.
Sci Rep ; 13(1): 18544, 2023 10 29.
Article in English | MEDLINE | ID: mdl-37899462

ABSTRACT

Observational studies have reported a correlation between Helicobacter pylori infection and colorectal cancer (CRC); however, the underlying cause has remained unclear. This research was aimed at determining whether there is a correlation between H. pylori infection and CRC by measuring the prevalence of H. pylori CagA antibodies and VacA antibodies. Using data from many genome-wide association studies (GWAS), we conducted a Mendelian randomization (MR) study with two sample GWAS. Then, we used bidirectional MR to evaluate the association between H. pylori infection and CRC for identifying causation. The most common method of analysis was the inverse variance-weighted technique. In addition, we performed supplementary analyses using the weighted median technique and MR-Egger regression. Horizontal pleiotropic outliers were identified and corrected using the MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method. Genetically predicted anti-H. pylori IgG seropositivity was not causally associated with CRC [odds ratio (OR): 1.12; 95% confidence interval (CI): 0.98-1.27, P = 0.08] and neither were H. pylori VacA antibody levels (OR = 0.96, 95% CI: 0.90-1.02, P = 0.25) or H. pylori CagA antibody levels (OR = 1.00, 95% CI: 0.93-1.07, P = 0.92). Furthermore, reverse MR analysis did not reveal evidence for a causal effect of CRC on H. pylori infection. The weighted median, the MR-Egger method, and MR-PRESSO yielded identical results. Using genetic data, MR analysis showed there was no evidence for a causal association between seroprevalence of H. pylori infection and CRC. The relationship between H. pylori infection and CRC requires further research.


Subject(s)
Colorectal Neoplasms , Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter Infections/complications , Genome-Wide Association Study , Mendelian Randomization Analysis , Seroepidemiologic Studies , Antibodies, Bacterial , Calgranulin A , Colorectal Neoplasms/genetics
20.
BMC Cancer ; 23(1): 960, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817092

ABSTRACT

OBJECTIVE: Antibody-drug conjugates (ADCs) that target human epidermal growth factor receptor 2 (HER2) are leading a new era of targeted cancer therapy. These drugs have also been associated with several fatal adverse events, such as pneumonia, interstitial lung disease, and infection. We performed a meta-analysis of randomized controlled trials (RCTs) to estimate the incidence and risk of fatal adverse events in cancer patients treated with HER2-targeted ADCs. METHODS: We performed a systematic search in Embase, PubMed, Web of Science, and Scopus databases from inception to February 1, 2022, and the last search was updated to July 1, 2023. The eligible studies for inclusion in our analysis were limited to RCTs of HER2-targeted ADCs that were approved by the US Food and Drug Administration and examined on cancer patients with available data on fatal adverse events. The protocol for this study was registered in PROSPERO (No. CRD42022331627). RESULTS: Fifteen studies (13 RCTs) involving 7,277 patients were finally included for meta-analysis. Of these patients, 4,246 received HER2-targeted ADCs and 3,481 received the control treatment. The data were combined using Bayesian hierarchical modeling, which allowed for the estimation of the mean incidence of fatal adverse events to be 0.78% (95% CrI: 0.28-1.37%, τ = 0.006) for the patients treated with HER2-targeted ADCs. The relative risk was 0.80 (95% CrI, 0.5-1.26, τ = 0.17) compared to control patients. Among 43 reported deaths caused by HER2-targeted ADCs, the most common fatal adverse event was respiratory toxicity, including pneumonia, pneumonitis, and interstitial lung disease. On subgroup analysis, no difference in the risk of fatal adverse events was found between different HER2-targeted ADCs or cancer types. CONCLUSION: Our findings suggest that the risk of fatal adverse events with HER2-targeted ADCs may be lower compared to standard control therapies in cancer patients, and there is no significant difference in risk observed between different HER2-targeted ADCs or cancer types. However, the most common fatal adverse event was respiratory toxicity, suggesting that cancer patients who use the above drugs should strengthen respiratory system monitoring and take preventive measures in some severe cases.


Subject(s)
Immunoconjugates , Lung Diseases, Interstitial , Neoplasms , Pneumonia , Humans , Immunoconjugates/adverse effects , Incidence , Randomized Controlled Trials as Topic , Neoplasms/drug therapy , Lung Diseases, Interstitial/chemically induced , Lung Diseases, Interstitial/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL