Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Biochem Biophys Res Commun ; 736: 150515, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39128268

ABSTRACT

Heat shock cognate protein 70 (Hsc70/HSPA8) belongs to the Hsp70 family of molecular chaperones. The fundamental functions of Hsp70 family molecular chaperones depend on ATP-dependent allosteric regulation of binding and release of hydrophobic polypeptide substrates. Hsc70 is also involved in various other cellular functions including selective pathways of protein degradation: chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI), in which Hsc70 recruits substrate proteins containing a KFERQ-like pentapeptide motif from the cytosol to lysosomes and late endosomes, respectively. However, whether the interaction between Hsc70 and the pentapeptide motif is direct or mediated by other molecules has remained unknown. In the present study, we introduced a photo-crosslinker near the KFERQ motif in a CMA/eMI model substrate and successfully detected its crosslinking with Hsc70, revealing the direct interaction between Hsc70 and the KFERQ motif for the first time. In addition, we demonstrated that the loss of the Hsc70 ATPase activity by the D10 N mutation appreciably reduced the crosslinking efficiency. Our present results suggested that the ATP allostery of Hsc70 is involved in the direct interaction of Hsc70 with the KFERQ-like pentapeptide.

2.
Dev Cell ; 59(15): 2005-2016.e4, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38810653

ABSTRACT

Differentiation of murine epidermal stem/progenitor cells involves the permanent withdrawal from the cell cycle, the synthesis of various protein and lipid components for the cornified envelope, and the controlled dissolution of cellular organelles and nuclei. Deregulated epidermal differentiation contributes to the development of various skin diseases, including skin cancers. With a genome-wide shRNA screen, we identified vesicle-associated membrane protein 2 (VAMP2) as a critical factor involved in skin differentiation. Deletion of VAMP2 leads to aberrant skin stratification and enucleation in vivo. With quantitative proteomics, we further identified an autophagy protein, focal adhesion kinase family interacting protein of 200 kDa (FIP200), as a binding partner of VAMP2. Additionally, we showed that both VAMP2 and FIP200 are critical for murine keratinocyte enucleation and epidermal differentiation. Loss of VAMP2 or FIP200 enhances cutaneous carcinogenesis in vivo. Together, our findings identify important molecular mechanisms underlying epidermal differentiation and skin tumorigenesis.


Subject(s)
Autophagy-Related Proteins , Autophagy , Carcinogenesis , Cell Differentiation , Epidermis , Keratinocytes , Vesicle-Associated Membrane Protein 2 , Animals , Mice , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Keratinocytes/metabolism , Keratinocytes/cytology , Epidermis/metabolism , Epidermis/pathology , Vesicle-Associated Membrane Protein 2/metabolism , Vesicle-Associated Membrane Protein 2/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinogenesis/genetics , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/genetics , Epidermal Cells/metabolism , Cell Nucleus/metabolism , Mice, Knockout
3.
Cell Rep ; 43(5): 114131, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38656870

ABSTRACT

Atg8 paralogs, consisting of LC3A/B/C and GBRP/GBRPL1/GATE16, function in canonical autophagy; however, their function is controversial because of functional redundancy. In innate immunity, xenophagy and non-canonical single membranous autophagy called "conjugation of Atg8s to single membranes" (CASM) eliminate bacteria in various cells. Previously, we reported that intracellular Streptococcus pneumoniae can induce unique hierarchical autophagy comprised of CASM induction, shedding, and subsequent xenophagy. However, the molecular mechanisms underlying these processes and the biological significance of transient CASM induction remain unknown. Herein, we profile the relationship between Atg8s, autophagy receptors, poly-ubiquitin, and Atg4 paralogs during pneumococcal infection to understand the driving principles of hierarchical autophagy and find that GATE16 and GBRP sequentially play a pivotal role in CASM shedding and subsequent xenophagy induction, respectively, and LC3A and GBRPL1 are involved in CASM/xenophagy induction. Moreover, we reveal ingenious bacterial tactics to gain intracellular survival niches by manipulating CASM-xenophagy progression by generating intracellular pneumococci-derived H2O2.


Subject(s)
Autophagy-Related Protein 8 Family , Streptococcus pneumoniae , Animals , Mice , Autophagy , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/metabolism , Macroautophagy , Microtubule-Associated Proteins/metabolism , Pneumococcal Infections/microbiology , Pneumococcal Infections/metabolism , Pneumococcal Infections/immunology , Streptococcus pneumoniae/metabolism
4.
Res Sq ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38645153

ABSTRACT

Background: Nuclear mitotic apparatus protein 1 (NuMA1) is a cell cycle protein and upregulated in breast cancer. However, the role of NuMA1 in TNBC and its regulation in heterogenous populations remains elusive. Methods: We performed CRISPR mediated deletion of NuMA1 in mouse TNBC cells, BF3M. FACS was utilized to isolate BCSCs, and bulk cells based on CD29 and CD61 markers. Cell viability, migration, and invasion ability of BCSCs and bulk cells was evaluated using MTT, wound healing and transwell invasion assays, respectively. In vivo mouse breast cancer and lung metastatic models were generated to evaluate the combination treatment of SMI-4a and Lys-o5 inhibitors. Results: We identified that high expression of NuMA1 associated with poor survival of breast cancer patients. Further, human tissue microarray results depicted high expression of NuMA1 in TNBC relative to non-adjacent normal tissues. Therefore, we performed CRISPR mediated deletion of NuMA1 in a mouse mammary tumor cell line, BF3M and revealed that NuMA1 deletion reduced mammary tumorigenesis. We also showed that NuMA1 deletion reduced ALDH+ and CD29hiCD61+ breast cancer stem cells (BCSCs), indicating a role of NuMA1 in BCSCs. Further, sorted and characterized BCSCs from BF3M depicted reduced metastasis with NuMA1 KO cells. Moreover, we found that PIM1, an upstream kinase of NuMA1 plays a preferential role in maintenance of BCSCs associated phenotypes, but not in bulk cells. In contrast, PIM1 kinase inhibition in bulk cells depicted increased autophagy (FIP200). Therefore, we applied a combination treatment strategy of PIM1 and autophagy inhibition using SMI-4a and Lys05 respectively, showed higher efficacy against cell viability of both these populations and further reduced breast tumor formation and metastasis. Together, our study demonstrated NuMA1 as a potential therapeutic target and combination treatment using inhibitors for an upstream kinase PIM1 and autophagy inhibitors could be a potentially new therapeutic approach for TNBC. Conclusions: Our study demonstrated that combination treatment of PIM1 inhibitor and autophagy inhibitor depicted reduced mammary tumorigenesis and metastasis by targeting NuMA1 in BCSCs and bulk cells of TNBC, demonstrating this combination treatment approach could be a potentially effective therapy for TNBC patients.

6.
Cell Rep ; 43(2): 113780, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38363674

ABSTRACT

Autophagy is a conserved cellular process, and its dysfunction is implicated in cancer and other diseases. Here, we employ an in vivo CRISPR screen targeting genes implicated in the regulation of autophagy to identify the Nsfl1c gene encoding p47 as a suppressor of human epidermal growth factor receptor 2 (HER2)+ breast cancer metastasis. p47 ablation specifically increases metastasis without promoting primary mammary tumor growth. Analysis of human breast cancer patient databases and tissue samples indicates a correlation of lower p47 expression levels with metastasis and decreased survival. Mechanistic studies show that p47 functions in the repair of lysosomal damage for autophagy flux and in the endosomal trafficking of nuclear factor κB essential modulator for lysosomal degradation to promote metastasis. Our results demonstrate a role and mechanisms of p47 in the regulation of breast cancer metastasis. They highlight the potential to exploit p47 as a suppressor of metastasis through multiple pathways in HER2+ breast cancer cells.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Humans , Animals , Female , Breast Neoplasms/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Autophagy/genetics , Databases, Factual
7.
Autophagy ; 20(3): 525-540, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37733921

ABSTRACT

Most breast cancers do not respond to immune checkpoint inhibitors and there is an urgent need to identify novel sensitization strategies. Herein, we uncovered that activation of the TBK-IFN pathway that is mediated by the TBK1 adapter protein AZI2 is a potent strategy for this purpose. Our initial observations showed that RB1CC1 depletion leads to accumulation of AZI2, in puncta along with selective macroautophagy/autophagy cargo receptors, which are both required for TBK1 activation. Specifically, disrupting the selective autophagy function of RB1CC1 was sufficient to sustain AZI2 puncta accumulation and TBK1 activation. AZI2 then mediates downstream activation of DDX3X, increasing its interaction with IRF3 for transcription of pro-inflammatory chemokines. Consequently, we performed a screen to identify inhibitors that can induce the AZI2-TBK1 pathway, and this revealed Lys05 as a pharmacological agent that induced pro-inflammatory chemokine expression and CD8+ T cell infiltration into tumors. Overall, we have identified a distinct AZI2-TBK1-IFN signaling pathway that is responsive to selective autophagy blockade and can be activated to make breast cancers more immunogenic.Abbreviations: AZI2/NAP1: 5-azacytidine induced 2; CALCOCO2: calcium binding and coiled-coil domain 2; DDX3X: DEAD-box helicase 3 X-linked; FCCP: carbonyl cyanide p-triflouromethoxyphenylhydrazone; a protonophore that depolarizes the mitochondrial inner membrane; ICI: immune checkpoint inhibitor; IFN: interferon; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1.


Subject(s)
Breast Neoplasms , Macroautophagy , Humans , Female , Autophagy , CD8-Positive T-Lymphocytes , T-Lymphocytes , Protein Serine-Threonine Kinases
8.
Cell Rep ; 42(12): 113472, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37999975

ABSTRACT

Mitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs. By combining mtGLP with structured illumination microscopy to monitor mitochondrial dynamics, we discover the formation of nucleoid condensates in damaged mitochondria. We further reveal that nucleoid condensates promoted the peripheral fission of damaged mitochondria via asymmetric segregation. Through simulations, we find that the peripheral fission events occurred when the nucleoid condensates interacted with the highly curved membrane regions at the two ends of the mitochondria. Overall, we show that mitochondrial nucleoid condensates utilize peripheral fission to maintain mitochondrial homeostasis.


Subject(s)
DNA, Mitochondrial , Mitochondria , Mitochondria/genetics , DNA, Mitochondrial/genetics , Mitochondrial Membranes , Mitochondrial Dynamics/genetics , Mitochondrial Proteins
9.
Adv Drug Deliv Rev ; 199: 114978, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37385544

ABSTRACT

Optical microscopes are an important imaging tool that have effectively advanced the development of modern biomedicine. In recent years, super-resolution microscopy (SRM) has become one of the most popular techniques in the life sciences, especially in the field of living cell imaging. SRM has been used to solve many problems in basic biological research and has great potential in clinical application. In particular, the use of SRM to study drug delivery and kinetics at the subcellular level enables researchers to better study drugs' mechanisms of action and to assess the efficacy of their targets in vivo. The purpose of this paper is to review the recent advances in SRM and to highlight some of its applications in assessing subcellular drug dynamics.

10.
Autophagy ; : 1-2, 2023 May 14.
Article in English | MEDLINE | ID: mdl-37170617

ABSTRACT

Lymphatic malformation (LM) is a vascular anomaly from lymphatic endothelial cells (ECs), and a fraction of the patients could progress to the deadly malignant lymphangiosarcoma (LAS). Using genetic tools to delete an essential autophagy gene Rb1cc1/FIP200 or its mutation specifically blocking its autophagy function, we demonstrated that autophagy inhibition abrogated LM progression to LAS although not affecting LM formation in our recently developed mouse model of LAS. Analysis of the mouse models in vivo and vascular tumor cells in vitro showed that autophagy inhibition reduced vascular tumor cell proliferation in vitro and tumorigenicity in vivo without affecting mTORC1 signaling as an oncogenic driver directly. Transcriptional profiling of autophagy-deficient tumor cells and further mechanistic studies revealed a role for osteopontin (OPN) and its downstream Jak/Stat3 signaling in mediating regulation of vascular tumor cells by autophagy. Together, these results support potential new prophylactic strategies to targeting autophagy and/or its downstream OPN expression to prevent progression of the benign LM to the malignant and deadly LAS.Abbreviations: LM: lymphatic malformation; EC: endothelial cell; LAS: lymphangiosarcoma; OPN: osteopontin; RB1CC1: RB1 Inducible Coiled-Coil 1; FIP200: FAK family-interacting protein of 200 kDa.

12.
Nat Commun ; 14(1): 978, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36813768

ABSTRACT

Lymphatic malformation (LM) is a vascular anomaly originating from lymphatic endothelial cells (ECs). While it mostly remains a benign disease, a fraction of LM patients progresses to malignant lymphangiosarcoma (LAS). However, very little is known about underlying mechanisms regulating LM malignant transformation to LAS. Here, we investigate the role of autophagy in LAS development by generating EC-specific conditional knockout of an essential autophagy gene Rb1cc1/FIP200 in Tsc1iΔEC mouse model for human LAS. We find that Fip200 deletion blocked LM progression to LAS without affecting LM development. We further show that inhibiting autophagy by genetical ablation of FIP200, Atg5 or Atg7, significantly inhibited LAS tumor cell proliferation in vitro and tumorigenicity in vivo. Transcriptional profiling of autophagy-deficient tumor cells and additional mechanistic analysis determine that autophagy plays a role in regulating Osteopontin expression and its down-stream Jak/Stat3 signaling in tumor cell proliferation and tumorigenicity. Lastly, we show that specifically disrupting FIP200 canonical autophagy function by knocking-in FIP200-4A mutant allele in Tsc1iΔEC mice blocked LM progression to LAS. These results demonstrate a role for autophagy in LAS development, suggesting new strategies for preventing and treating LAS.


Subject(s)
Lymphangiosarcoma , Humans , Mice , Animals , Autophagy-Related Proteins , Endothelial Cells , Osteopontin , Autophagy/genetics , STAT3 Transcription Factor
13.
Biomaterials ; 292: 121929, 2023 01.
Article in English | MEDLINE | ID: mdl-36455487

ABSTRACT

The endoplasmic reticulum's (ER) dynamic nature, essential for maintaining cellular homeostasis, can be influenced by stress-induced damage, which can be assessed by examining the morphology of ER dynamics and, more locally, ER properties such as hydrophobicity, viscosity, and polarity. Although numerous ER-specific chemical probes have been developed to monitor the ER's physical and chemical parameters, the quantitative detection and super-resolution imaging of its local hydrophobicity have yet to be explored. Here, we describe a photostable ER-targeted probe with high signal-to-noise ratio for super-resolution imaging that can specifically respond to changes in ER hydrophobicity under stress based on a "reserve-release" mechanism. The probe shows an excellent ability to target ER over commercial ER dyes and can be used to track local changes of hydrophobicity by fluorescence intensity and morphology during the selective autophagy of ER (i.e., reticulophagy). By correlating the level and location of ER damage with the distribution of fluorescence intensity, we were able to assess reticulophagy at the subcellular level. Beyond that, we developed a topological analytical tool adaptable to any ER probe for detecting structural changes in ER and thus quantitatively identifying reticulophagy. The algorithm-assisted tool can also be adapted to a wide range of molecular probes and organelles. Altogether, the new probe and analytical strategy described here show promise for the quantitative detection and analysis of subtle ER damage and stress.


Subject(s)
Autophagy , Endoplasmic Reticulum , Endoplasmic Reticulum Stress
14.
Autophagy ; 19(6): 1662-1677, 2023 06.
Article in English | MEDLINE | ID: mdl-36394358

ABSTRACT

RB1CC1/FIP200 is an essential macroautophagy/autophagy protein that plays an important role in a variety of biological and disease processes through its canonical autophagy-dependent and -independent functions. However, it remains largely unknown whether post-translational modifications could regulate RB1CC1 and its associated autophagy functions. Here, we report acetylation of several lysine residues of RB1CC1 by acetyltransferase CREBBP (CREB binding protein), with K276 as the major CREBBP acetylation site. K276 is also identified as a ubiquitination site by mass spectrometry, and acetylation at this site reduces ubiquitination of RB1CC1 to inhibit its ubiquitin-dependent degradation. We also find that RB1CC1 contains an N-terminal intrinsically disordered region (IDR) capable of forming liquid-liquid phase separation (LLPS) in vitro, which may drive formation of RB1CC1 puncta with LLPS properties in cells independent of SQSTM1/p62 and other autophagy receptors CALCOCO2/NDP52, NBR1, TAX1BP1 and OPTN. Mutational analysis shows that both K276 acetylation and the N-terminal IDR containing it are important for maintaining canonical autophagy function of RB1CC1 in breast cancer cells. Our findings demonstrate regulation of RB1CC1 by a new post-translational mechanism and suggest potential therapeutic application of inducing RB1CC1 degradation through blocking K276 acetylation in the treatment of cancer and other diseases.Abbreviations: Baf-A1: bafilomycin A1; CREBBP/CBP: CREB binding protein; CHX: cycloheximide; EP300/p300: E1A binding protein p300; FRAP: fluorescence recovery after photobleaching; HADCs: histone deacetylases; IDR: intrinsically disordered region; LLPS: liquid-liquid phase separation; KAT2A/GCN5: lysine acetyltransferase 2A; KAT2B/PCAF: lysine acetyltransferase 2B; KAT5/TIP60: lysine acetyltransferase 5; KAT8/MOF: lysine acetyltransferase 8; NAM: nicotinamide; PAS: phagophore assembly site; PEG-8000: polyethylene glycol 8000; RB1CC1/FIP200: RB1 inducible coiled-coil 1; TSA: trichostatin A.


Subject(s)
Autophagy , CREB-Binding Protein , Acetylation , Protein Processing, Post-Translational , Cell Cycle Proteins
15.
Nat Commun ; 13(1): 4303, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35879298

ABSTRACT

Mitochondria are highly dynamic organelles whose fragmentation by fission is critical to their functional integrity and cellular homeostasis. Here, we develop a method via optogenetic control of mitochondria-lysosome contacts (MLCs) to induce mitochondrial fission with spatiotemporal accuracy. MLCs can be achieved by blue-light-induced association of mitochondria and lysosomes through various photoactivatable dimerizers. Real-time optogenetic induction of mitochondrial fission is tracked in living cells to measure the fission rate. The optogenetic method partially restores the mitochondrial functions of SLC25A46-/- cells, which display defects in mitochondrial fission and hyperfused mitochondria. The optogenetic MLCs system thus provides a platform for studying mitochondrial fission and treating mitochondrial diseases.


Subject(s)
Mitochondrial Diseases , Mitochondrial Dynamics , Humans , Lysosomes/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/metabolism , Optogenetics , Phosphate Transport Proteins/metabolism
16.
Front Cell Dev Biol ; 10: 821855, 2022.
Article in English | MEDLINE | ID: mdl-35846375

ABSTRACT

Autophagy is a highly conserved recycling process through which cellular homeostasis is achieved and maintained. With respect to cancer biology, autophagy acts as a double-edged sword supporting tumor cells during times of metabolic and therapeutic stress, while also inhibiting tumor development by promoting genomic stability. Accumulating evidence suggests that autophagy plays a role in thyroid cancer, acting to promote tumor cell viability and metastatic disease through maintenance of cancer stem cells (CSCs), supporting epithelial-to-mesenchymal transition (EMT), and preventing tumor cell death. Intriguingly, well-differentiated thyroid cancer is more prevalent in women as compared to men, though the underlying molecular biology driving this disparity has not yet been elucidated. Several studies have demonstrated that autophagy inhibitors may augment the anti-cancer effects of known thyroid cancer therapies. Autophagy modulation has become an attractive target for improving outcomes in thyroid cancer. This review aims to provide a comprehensive picture of the current knowledge regarding the role of autophagy in thyroid cancer, focusing on the potential mechanism(s) through which inhibition of autophagy may enhance cancer therapy and outcomes.

17.
EMBO J ; 41(14): e109777, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35670107

ABSTRACT

Autophagy represents a fundamental mechanism for maintaining cell survival and tissue homeostasis in response to physiological and pathological stress. Autophagy initiation converges on the FIP200-ATG13-ULK1 complex wherein the serine/threonine kinase ULK1 plays a central role. Here, we reveal that the E3 ubiquitin ligase TRIM27 functions as a negative regulatory component of the FIP200-ATG13-ULK1 complex. TRIM27 directly polyubiquitinates ULK1 at K568 and K571 sites with K48-linked ubiquitin chains, with proteasomal turnover maintaining control over basal ULK1 levels. However, during starvation-induced autophagy, TRIM27 catalyzes non-degradative K6- and K11-linked ubiquitination of the serine/threonine kinase 38-like (STK38L) kinase. In turn, STK38L ubiquitination promotes its activation and phosphorylation of ULK1 at Ser495, rendering ULK1 in a permissive state for TRIM27-mediated hyper-ubiquitination of ULK1. This cooperative mechanism serves to restrain the amplitude and duration of autophagy. Further evidence from mouse models shows that basal autophagy levels are increased in Trim27 knockout mice and that Trim27 differentially regulates tumorigenesis and metastasis. Our study identifies a key role of STK38L-TRIM27-ULK1 signaling axis in negatively controlling autophagy with relevance established in human breast cancer.


Subject(s)
Autophagy , Protein Serine-Threonine Kinases , Animals , Autophagy-Related Protein-1 Homolog/genetics , Carcinogenesis/genetics , DNA-Binding Proteins , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Nuclear Proteins , Protein Serine-Threonine Kinases/genetics , Serine , Transcription Factors , Ubiquitin-Protein Ligases
18.
Proc Natl Acad Sci U S A ; 119(21): e2202016119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35537042

ABSTRACT

Autophagy defects are a risk factor for inflammatory bowel diseases (IBDs) through unknown mechanisms. Whole-body conditional deletion of autophagy-related gene (Atg) Atg7 in adult mice (Atg7Δ/Δ) causes tissue damage and death within 3 mo due to neurodegeneration without substantial effect on intestine. In contrast, we report here that whole-body conditional deletion of other essential Atg genes Atg5 or Fip200/Atg17 in adult mice (Atg5Δ/Δ or Fip200Δ/Δ) caused death within 5 d due to rapid autophagy inhibition, elimination of ileum stem cells, and loss of barrier function. Atg5Δ/Δ mice lost PDGFRα+ mesenchymal cells (PMCs) and Wnt signaling essential for stem cell renewal, which were partially rescued by exogenous Wnt. Matrix-assisted laser desorption ionization coupled to mass spectrometry imaging (MALDI-MSI) of Atg5Δ/Δ ileum revealed depletion of aspartate and nucleotides, consistent with metabolic insufficiency underlying PMC loss. The difference in the autophagy gene knockout phenotypes is likely due to distinct kinetics of autophagy loss, as deletion of Atg5 more gradually extended lifespan phenocopying deletion of Atg7 or Atg12. Thus, autophagy is required for PMC metabolism and ileum stem cell and mammalian survival. Failure to maintain PMCs through autophagy may therefore contribute to IBD.


Subject(s)
Autophagy , Intestines , Receptor, Platelet-Derived Growth Factor alpha , Stem Cells , Animals , Autophagy/genetics , Autophagy-Related Protein 5 , Autophagy-Related Protein 7 , Autophagy-Related Proteins , Cell Survival , Mice , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Stem Cells/metabolism
19.
Cancers (Basel) ; 14(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35053617

ABSTRACT

It is a major challenge to treat metastasis due to the presence of heterogenous BCSCs. Therefore, it is important to identify new molecular targets and their underlying molecular mechanisms in various BCSCs to improve treatment of breast cancer metastasis. Here, we performed RNA sequencing on two distinct co-existing BCSC populations, ALDH+ and CD29hi CD61+ from PyMT mammary tumor cells and detected upregulation of biglycan (BGN) in these BCSCs. Genetic depletion of BGN reduced BCSC proportions and tumorsphere formation. Furthermore, BCSC associated aggressive traits such as migration and invasion were significantly reduced by depletion of BGN. Glycolytic and mitochondrial metabolic assays also revealed that BCSCs exhibited decreased metabolism upon loss of BGN. BCSCs showed decreased activation of the NFκB transcription factor, p65, and phospho-IκB levels upon BGN ablation, indicating regulation of NFκB pathway by BGN. To further support our data, we also characterized CD24-/CD44+ BCSCs from human luminal MCF-7 breast cancer cells. These CD24-/CD44+ BCSCs similarly exhibited reduced tumorigenic phenotypes, metabolism and attenuation of NFκB pathway after knockdown of BGN. Finally, loss of BGN in ALDH+ and CD29hi CD61+ BCSCs showed decreased metastatic potential, suggesting BGN serves as an important therapeutic target in BCSCs for treating metastasis of breast cancer.

20.
Commun Chem ; 5(1): 61, 2022 May 11.
Article in English | MEDLINE | ID: mdl-36697617

ABSTRACT

Phosphoinositide species, differing in phosphorylation at hydroxyls of the inositol head group, play roles in various cellular events. Despite the importance of phosphoinositides, simultaneous quantification of individual phosphoinositide species is difficult using conventional methods. Here we developed a supercritical fluid chromatography-mass spectrometry method that can quantify the molecular species of all seven phosphoinositide regioisomers. We used this method to analyze (1) profiles of phosphoinositide species in mouse tissues, (2) the effect of lysophosphatidylinositol acyltransferase 1-depletion on phosphoinositide acyl-chain composition in cultured cells, and (3) the molecular species of phosphatidylinositol-3-phosphate produced during the induction of autophagy. Although further improvement is needed for the absolute quantification of minor phosphoinositide regioisomers in biological samples, our method should clarify the physiological and pathological roles of phosphoinositide regioisomers at the molecular species level.

SELECTION OF CITATIONS
SEARCH DETAIL