Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Ann Rheum Dis ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39393844

ABSTRACT

OBJECTIVES: To assess the efficacy of a single intradiscal injection of allogeneic bone marrow mesenchymal stromal cells (BM-MSCs) versus a sham placebo in patients with chronic low back pain (LBP). METHODS: Participants were randomised in a prospective, double-blind, controlled study to receive either sham injection or intradiscal injection of 20 million allogeneic BM-MSC, between April 2018 and December 2022. The first co-primary endpoint was the rate of responders defined by improvement of the Visual Analogue Scale (VAS) for pain of at least 20% and 20 mm, or improvement of the Oswestry Disability Index (ODI) of 20% between baseline and month 12. The secondary structural co-primary endpoint was assessed by the disc fluid content measured by quantitative MRI T2, between baseline and month 12. Secondary endpoints included pain VAS, ODI, the Short Form (SF)-36 and the minimal clinically important difference in all timepoints (1, 3, 6, 12 and 24 months). We determined the immune response associated with allogeneic cell injection between baseline and 6 months. Serious adverse events (SAEs) were recorded. RESULTS: 114 patients were randomised (n=58, BM-MSC group; n=56, sham placebo group). At 12 months, the primary outcome was not reached (74% in the BM-MSC group vs 69% in the placebo group; p=0.77). The groups did not differ in all secondary outcomes. No SAE related to the intervention occurred. CONCLUSIONS: While our study did not conclusively demonstrate the efficacy of allogeneic BM-MSCs for LBP, the procedure was safe. Long-term outcomes of MSC therapy for LBP are still being studied. TRIAL REGISTRATION NUMBER: EudraCT 2017-002092-25/ClinicalTrials.gov: NCT03737461.

2.
J Vis Exp ; (211)2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39400183

ABSTRACT

The extensive characterization of tissue mineralization in the context of bone regeneration represents a significant challenge, given the numerous modalities that are currently available for analysis. Here, we propose a workflow for a comprehensive evaluation of new bone formation using a relevant large animal osseous ex vivo explant. A bone defect (diameter = 3.75 mm; depth = 5.0 mm) is created in an explanted sheep femoral head and injected with a macroporous bone substitute loaded with a pro-osteogenic growth factor (bone morphogenetic protein 2 - BMP2). Subsequently, the explant is maintained in culture for a 28-day period, allowing cellular colonization and subsequent bone formation. To evaluate the quality and structure of newly mineralized tissue, the following successive methods are set up: (i) Characterization and high-resolution 3D images of the entire explant using micro-CT, followed by deep learning image analyses to enhance the discrimination of mineralized tissues; (ii) Nano-indentation to determine the mechanical properties of the newly formed tissue; (iii) Histological examinations, such as Hematoxylin/Eosin/Saffron (HES), Goldner's trichrome, and Movat's pentachrome to provide a qualitative assessment of mineralized tissue, particularly with regard to the visualization of the osteoid barrier and the presence of bone cells; (iv) Back-scattering scanning electron microscopy (SEM) mapping with internal reference to quantify the degree of mineralization and provide detailed insights into surface morphology, mineral composition, and bone-biomaterial interface; (v) Raman spectroscopy to characterize the molecular composition of the mineralized matrix and to provide insights into the persistence of BMP2 within the cement through the detection of peptide bonds. This multimodal analysis will provide an effective assessment of newly formed bone and comprehensive qualitative and quantitative insights into mineralized tissues. Through the standardization of these protocols, we aim to facilitate interstudy comparisons and improve the validity and reliability of research findings.


Subject(s)
Bone Morphogenetic Protein 2 , Calcification, Physiologic , Animals , Bone Morphogenetic Protein 2/metabolism , Calcification, Physiologic/physiology , Sheep , X-Ray Microtomography/methods , Bone Substitutes/chemistry , Osteogenesis/physiology , Bone Regeneration/physiology
3.
Drug Discov Today ; 29(11): 104187, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306233

ABSTRACT

Osteoarthritis (OA) is an incurable, painful, and debilitating joint disease affecting over 500 million people worldwide. The OA joint tissues are infiltrated by various immune cells, particularly macrophages, which are able to induce or perpetuate inflammation. Notably, synovitis and its macrophage component represent a target of interest for developing treatments. In this review, we describe the latest advances in understanding the heterogeneity of macrophage origins, phenotypes, and functions in the OA joint and the effect of current symptomatic therapies on these cells. We then highlight the therapeutic potential of anticytokines/chemokines, nano- and microdrug delivery, and future strategies to modulate macrophage functions in OA.

4.
Radiat Environ Biophys ; 63(3): 337-350, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39115696

ABSTRACT

Little is known regarding radiation-induced matrikines and the possible degradation of extracellular matrix following therapeutic irradiation. The goal of this study was to determine if irradiation can cut collagen proteins at specific sites, inducing potentially biologically active peptides against cartilage cells. Chondrocytes cultured as 3D models were evaluated for extracellular matrix production. Bystander molecules were analyzed in vitro in the conditioned medium of X-irradiated chondrocytes. Preferential breakage sites were analyzed in collagen polypeptide by mass spectrometry and resulting peptides were tested against chondrocytes. 3D models of chondrocytes displayed a light extracellular matrix able to maintain the structure. Irradiated and bystander chondrocytes showed a surprising radiation sensitivity at low doses, characteristic of the presence of bystander factors, particularly following 0.1 Gy. The glycine-proline peptidic bond was observed as a preferential cleavage site and a possible weakness of the collagen polypeptide after irradiation. From the 46 collagen peptides analyzed against chondrocytes culture, 20 peptides induced a reduction of viability and 5 peptides induced an increase of viability at the highest concentration between 0.1 and 1 µg/ml. We conclude that irradiation promoted a site-specific degradation of collagen. The potentially resulting peptides induce negative or positive regulations of chondrocyte growth. Taken together, these results suggest that ionizing radiation causes a degradation of cartilage proteins, leading to a functional unbalance of cartilage homeostasis after exposure, contributing to cartilage dysfunction.


Subject(s)
Chondrocytes , Collagen , Chondrocytes/radiation effects , Chondrocytes/metabolism , Animals , Extracellular Matrix/metabolism , Extracellular Matrix/radiation effects , Pilot Projects , Cell Survival/radiation effects , Peptides , Cattle , Cells, Cultured
5.
Chem Mater ; 36(14): 6674-6695, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39070669

ABSTRACT

Boronate ester (BE) hydrogels are increasingly used for biomedical applications. The dynamic nature of these molecular networks enables bond rearrangement, which is associated with viscoelasticity, injectability, printability, and self-healing, among other properties. BEs are also sensitive to pH, redox reactions, and the presence of sugars, which is useful for the design of stimuli-responsive materials. Together, BE hydrogels are interesting scaffolds for use in drug delivery, 3D cell culture, and biofabrication. However, designing stable BE hydrogels at physiological pH (≈7.4) remains a challenge, which is hindering their development and biomedical application. In this context, advanced chemical insights into BE chemistry are being used to design new molecular solutions for material fabrication. This review article summarizes the state of the art in BE hydrogel design for biomedical applications with a focus on the materials chemistry of this class of materials. First, we discuss updated knowledge in BE chemistry including details on the molecular mechanisms associated with BE formation and breakage. Then, we discuss BE hydrogel formation at physiological pH, with an overview of the main systems reported to date along with new perspectives. A last section covers several prominent biomedical applications of BE hydrogels, including drug delivery, 3D cell culture, and bioprinting, with critical insights on the design relevance, limitations and potential.

6.
iScience ; 27(2): 109018, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38357665

ABSTRACT

Understanding the emergence of human notochordal cells (NC) is essential for the development of regenerative approaches. We present a comprehensive investigation into the specification and generation of bona fide NC using a straightforward pluripotent stem cell (PSC)-based system benchmarked with human fetal notochord. By integrating in vitro and in vivo transcriptomic data at single-cell resolution, we establish an extended molecular signature and overcome the limitations associated with studying human notochordal lineage at early developmental stages. We show that TGF-ß inhibition enhances the yield and homogeneity of notochordal lineage commitment in vitro. Furthermore, this study characterizes regulators of cell-fate decision and matrisome enriched in the notochordal niche. Importantly, we identify specific cell-surface markers opening avenues for differentiation refinement, NC purification, and functional studies. Altogether, this study provides a human notochord transcriptomic reference that will serve as a resource for notochord identification in human systems, diseased-tissues modeling, and facilitating future biomedical research.

7.
Adv Drug Deliv Rev ; 207: 115214, 2024 04.
Article in English | MEDLINE | ID: mdl-38395361

ABSTRACT

Low back pain stands as a pervasive global health concern, afflicting almost 80% of adults at some point in their lives with nearly 40% attributable to intervertebral disc degeneration (IVDD). As only symptomatic relief can be offered to patients there is a dire need for innovative treatments.Given the accumulating evidence that multiple microRNAs (miRs) are dysregulated during IVDD, they could have a huge potential against this debilitating condition. The way miRs can profoundly modulate signaling pathways and influence several cellular processes at once is particularly exciting to tackle this multifaceted disorder. However, miR delivery encounters extracellular and intracellular biological barriers. A promising technology to address this challenge is the vectorization of miRs within nanoparticles, providing both protection and enhancing their uptake within the scarce target cells of the degenerated IVD. This comprehensive review presents the diverse spectrum of miRs' connection with IVDD and demonstrates their therapeutic potential when vectorized in nanomedicines.


Subject(s)
Intervertebral Disc Degeneration , MicroRNAs , Adult , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/metabolism , Nanomedicine , Signal Transduction
8.
Soft Matter ; 19(46): 9027-9035, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37971365

ABSTRACT

Collagen/hyaluronan hydrogels with physical properties well suited for biomedical applications are challenging to synthesize due to the formation of polyionic complexes (PICs). A systematic physicochemical study was thus performed to determine novel conditions to inhibit the formation of collagen/hyaluronan PICs and obtain composite hydrogels with high physical properties. Using a range of pH from 1 to 5.5 and the addition of NaCl, type I collagen and tyramine-substituted hyaluronic acid (THA) solutions were mixed and analyzed by cryo-scanning electron microscopy and ATR-FTIR. PIC formation was inhibited at pH 1 without salt and at pH 2.5 and 5.5 in the presence of 400 mM NaCl. Interestingly, collagen fibrils were observed in solution at pH 5.5 before mixing with THA. After collagen gelling by pH increase, a homogeneous hydrogel consisting of collagen fibrils was only observed when PICs were inhibited. Then, the THA gelling performed by photo-crosslinking increased the rheological properties by four when hydrogels were formed with collagen/THA mixtures at pH 1 or 5.5 with salt. Taken together, these results show that a pH of 5.5, close to the collagen isoelectric point, enables the formation of collagen fibrils in solution, inhibits the PICs formation, and allows the formation of homogenous collagen/THA composite hydrogels compatible with cell survival.


Subject(s)
Hyaluronic Acid , Hydrogels , Hyaluronic Acid/chemistry , Isoelectric Point , Hydrogels/chemistry , Sodium Chloride , Collagen/chemistry
9.
Aging (Albany NY) ; 15(17): 8576-8593, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37659108

ABSTRACT

Senescent cells (SnCs) have been described to accumulate in osteoarthritis (OA) joint tissues in response to injury, thereby participating in OA development and progression. However, clinical therapeutic approaches targeting SnCs using senolysis, although promising in preclinical OA models, have not yet proven their efficacy in patients with knee OA. This pitfall may be due to the lack of understanding of the mechanisms underlying chondrocyte senescence. Therefore, our study aimed to generate models of chondrocyte senescence. This study used etoposide, to induce DNA damage-related senescence or chronic exposure to IL-1ß to entail inflammation-related senescence in human OA chondrocytes. Several hallmarks of cellular senescence, such as cell cycle arrest, expression of cyclin-dependent kinase inhibitors, DNA damages, and senescence-associated secretory profile were evaluated. Chronic exposure to IL-1ß induces only partial expression of senescence markers and does not allow us to conclude on its ability to induce senescence in chondrocytes. On the other hand, etoposide treatment reliably induces DNA damage-related senescence in human articular chondrocytes evidenced by loss of proliferative capacity, DNA damage accumulation, and expression of some SASP components. Etoposide-induced senescence model may help investigate the initiation of cellular senescence in chondrocytes, and provide a useful model to develop therapeutic approaches to target senescence in OA.


Subject(s)
Chondrocytes , Osteoarthritis, Knee , Humans , Etoposide/pharmacology , Osteoarthritis, Knee/genetics , Biological Transport , DNA Damage
10.
Adv Sci (Weinh) ; 10(30): e2300055, 2023 10.
Article in English | MEDLINE | ID: mdl-37712185

ABSTRACT

Bioprinting is a booming technology, with numerous applications in tissue engineering and regenerative medicine. However, most biomaterials designed for bioprinting depend on the use of sacrificial baths and/or non-physiological stimuli. Printable biomaterials also often lack tunability in terms of their composition and mechanical properties. To address these challenges, the authors introduce a new biomaterial concept that they have termed "clickable dynamic bioinks". These bioinks use dynamic hydrogels that can be printed, as well as chemically modified via click reactions to fine-tune the physical and biochemical properties of printed objects after printing. Specifically, using hyaluronic acid (HA) as a polymer of interest, the authors investigate the use of a boronate ester-based crosslinking reaction to produce dynamic hydrogels that are printable and cytocompatible, allowing for bioprinting. The resulting dynamic bioinks are chemically modified with bioorthogonal click moieties to allow for a variety of post-printing modifications with molecules carrying the complementary click function. As proofs of concept, the authors perform various post-printing modifications, including adjusting polymer composition (e.g., HA, chondroitin sulfate, and gelatin) and stiffness, and promoting cell adhesion via adhesive peptide immobilization (i.e., RGD peptide). The results also demonstrate that these modifications can be controlled over time and space, paving the way for 4D bioprinting applications.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Biocompatible Materials/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Polymers , Bioprinting/methods , Hyaluronic Acid/chemistry
11.
Vet Radiol Ultrasound ; 64(5): 864-872, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37549962

ABSTRACT

Magnetic resonance imaging is the gold standard for diagnosing intervertebral disc (IVD) degeneration in dogs. However, published methods for quantifying severity or progression of IVD degeneration are currently limited. Mapping MRI sequences are used in humans for quantifying IVD degeneration but have rarely been applied in dogs. The objective of this prospective, method comparison study was to evaluate variable flip angle T1 mapping and multiecho T2 and T2* mapping as methods for quantifying canine lumbar IVD degeneration in twenty canine patients without clinical signs of spinal disease. Ventral and dorsal lumbar IVD widths were measured on radiographs, and lumbar IVDs were assigned a qualitative Pfirrmann grade based on standard T2-weighted sequences. T1, T2, and T2* relaxation times of the nucleus pulposus (NP) were measured on corresponding maps using manual-drawn ROIs. Strong intra- and interrater agreements were found (P < 0.01) for NP relaxation times. Radiographic IVD widths and T1, T2, and T2* mapping NP relaxation times were negatively correlated with Pfirrmann grading (P < 0.01). Significant differences in T1 NP relaxation times were found between Pfirrmann grade I and the other grades (P < 0.01). Significant differences in T2 and T2* NP relaxation times were found between grade I and the other grades and between grades II and III (P < 0.01). Findings indicated that T1, T2, and T2* MRI mapping sequences are feasible in dogs. Measured NP relaxation times were repeatable and decreased when Pfirrmann grades increased. These methods may be useful for quantifying the effects of regenerative treatment interventions in future longitudinal studies.


Subject(s)
Dog Diseases , Intervertebral Disc Degeneration , Intervertebral Disc , Humans , Dogs , Animals , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/veterinary , Prospective Studies , Magnetic Resonance Imaging/veterinary , Magnetic Resonance Imaging/methods , Lumbosacral Region , Image Interpretation, Computer-Assisted , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/pathology , Intervertebral Disc/diagnostic imaging , Dog Diseases/diagnostic imaging , Dog Diseases/pathology
12.
Cell Commun Signal ; 21(1): 137, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316888

ABSTRACT

BACKGROUND: Osteoarthritis is an age-related disease that currently faces a lack of symptomatic treatment. Inflammation, which is mainly sustained by pro-inflammatory cytokines such as IL-1b, TNF, and IL-6, plays an important role in osteoarthritis progression. In this context, pro-inflammatory cytokines are widely used to mimic the inflammatory component of osteoarthritis in vitro. However, the therapeutic failures of clinical trials evaluating anti-cytokines drugs highlight the lack of overall understanding of the effects of these cytokines on chondrocytes. METHODS: Here, we generated a comprehensive transcriptomic and proteomic dataset of osteoarthritic chondrocytes treated with these cytokines to describe their pro-inflammatory signature and compare it to the transcriptome of non-osteoarthritic chondrocytes. Then, the dysregulations highlighted at the molecular level were functionally confirmed by real-time cellular metabolic assays. RESULTS: We identified dysregulation of metabolic-related genes in osteoarthritic chondrocytes but not in non-osteoarthritic chondrocytes. A metabolic shift, toward increased glycolysis at the expense of mitochondrial respiration, was specifically confirmed in osteoarthritic chondrocytes treated with IL-1b or TNF. CONCLUSION: These data show a strong and specific association between inflammation and metabolism in osteoarthritic chondrocytes, which was not found in non-osteoarthritic chondrocytes. This indicates that the link between inflammation and metabolic dysregulation may be exacerbated during chondrocyte damage in osteoarthritis. Video Abstract.


Subject(s)
Chondrocytes , Osteoarthritis , Humans , Proteomics , Inflammation , Cytokines , Glycolysis
13.
Bone Res ; 11(1): 26, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37217496

ABSTRACT

Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases leading to increased bone resorption. Preventing this inflammatory bone resorption is a major health challenge. Both diseases share immunopathogenic similarities and a common inflammatory environment. The autoimmune response or periodontal infection stimulates certain immune actors, leading in both cases to chronic inflammation that perpetuates bone resorption. Moreover, RA and periodontitis have a strong epidemiological association that could be explained by periodontal microbial dysbiosis. This dysbiosis is believed to be involved in the initiation of RA via three mechanisms. (i) The dissemination of periodontal pathogens triggers systemic inflammation. (ii) Periodontal pathogens can induce the generation of citrullinated neoepitopes, leading to the generation of anti-citrullinated peptide autoantibodies. (iii) Intracellular danger-associated molecular patterns accelerate local and systemic inflammation. Therefore, periodontal dysbiosis could promote or sustain bone resorption in distant inflamed joints. Interestingly, in inflammatory conditions, the existence of osteoclasts distinct from "classical osteoclasts" has recently been reported. They have proinflammatory origins and functions. Several populations of osteoclast precursors have been described in RA, such as classical monocytes, a dendritic cell subtype, and arthritis-associated osteoclastogenic macrophages. The aim of this review is to synthesize knowledge on osteoclasts and their precursors in inflammatory conditions, especially in RA and periodontitis. Special attention will be given to recent data related to RA that could be of potential value in periodontitis due to the immunopathogenic similarities between the two diseases. Improving our understanding of these pathogenic mechanisms should lead to the identification of new therapeutic targets involved in the pathological inflammatory bone resorption associated with these diseases.

14.
Mater Today Bio ; 19: 100581, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36896417

ABSTRACT

Osteoarthritis (OA) is an inflammatory joint disease that affects cartilage, subchondral bone, and joint tissues. Undifferentiated Mesenchymal Stromal Cells are a promising therapeutic option for OA due to their ability to release anti-inflammatory, immuno-modulatory, and pro-regenerative factors. They can be embedded in hydrogels to prevent their tissue engraftment and subsequent differentiation. In this study, human adipose stromal cells are successfully encapsulated in alginate microgels via a micromolding method. Microencapsulated cells retain their in vitro metabolic activity and bioactivity and can sense and respond to inflammatory stimuli, including synovial fluids from OA patients. After intra-articular injection in a rabbit model of post-traumatic OA, a single dose of microencapsulated human cells exhibit properties matching those of non-encapsulated cells. At 6 and 12 weeks post-injection, we evidenced a tendency toward a decreased OA severity, an increased expression of aggrecan, and a reduced expression of aggrecanase-generated catabolic neoepitope. Thus, these findings establish the feasibility, safety, and efficacy of injecting cells encapsulated in microgels, opening the door to a long-term follow-up in canine OA patients.

15.
Biomaterials ; 296: 122091, 2023 05.
Article in English | MEDLINE | ID: mdl-36947892

ABSTRACT

Osteoarthritis (OA) is the most common debilitating joint disease, yet there is no curative treatment for OA to date. Delivering mesenchymal stromal cells (MSCs) as therapeutic cells to mitigate the inflammatory symptoms associated with OA is attracting increasing attention. In principle, MSCs could respond to the pro-inflammatory microenvironment of an OA joint by the secretion of anti-inflammatory, anti-apoptotic, immunomodulatory and pro-regenerative factors, therefore limiting pain, as well as the disease development. However, the microenvironment of MSCs is known to greatly affect their survival and bioactivity, and using tailored biomaterial scaffolds could be key to the success of intra-articular MSC-based therapies. The aim of this review is to identify and discuss essential characteristics of biomaterial scaffolds to best promote MSC secretory functions in the context of OA. First, a brief introduction to the OA physiopathology is provided, followed by an overview of the MSC secretory functions, as well as the current limitations of MSC-based therapy. Then, we review the current knowledge on the effects of cell-material interactions on MSC secretion. These considerations allow us to define rational guidelines for next-generation biomaterial design to improve the MSC-based therapy of OA.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoarthritis , Humans , Osteoarthritis/therapy , Osteoarthritis/pathology , Mesenchymal Stem Cells/pathology , Biocompatible Materials/therapeutic use , Anti-Inflammatory Agents
16.
Bioact Mater ; 24: 438-449, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36632500

ABSTRACT

The cellular microenvironment plays a major role in the biological functions of cells. Thus, biomaterials, especially hydrogels, which can be design to mimic the cellular microenvironment, are being increasingly used for cell encapsulation, delivery, and 3D culture, with the hope of controlling cell functions. Yet, much remains to be understood about the effects of cell-material interactions, and advanced synthetic strategies need to be developed to independently control the mechanical and biochemical properties of hydrogels. To address this challenge, we designed a new hyaluronic acid (HA)-based hydrogel platform using a click and bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) reaction. This approach facilitates the synthesis of hydrogels that are easy to synthesize and sterilize, have minimal swelling, are stable long term, and are cytocompatible. It provides bioorthogonal HA gels over an uncommonly large range of stiffness (0.5-45 kPa), all forming within 1-15 min. More importantly, our approach offers a versatile one-pot procedure to independently tune the hydrogel composition (e.g., polymer and adhesive peptides). Using this platform, we investigate the independent effects of polymer type, stiffness, and adhesion on the secretory properties of human adipose-derived stromal cells (hASCs) and demonstrate that HA can enhance the secretion of immunomodulatory factors by hASCs.

17.
Stem Cells Int ; 2022: 5494749, 2022.
Article in English | MEDLINE | ID: mdl-36561277

ABSTRACT

Background: Mesenchymal stem/stromal cells (MSCs) have been widely used for their therapeutic properties in many clinical applications including osteoarthritis. Despite promising preclinical results showing the ability of MSC to reduce the clinical severity of osteoarthritis (OA) in experimental animal models, the benefits of intra-articular injection of MSC in OA patients are limited to the short term. In this regard, it is anticipated that improving the properties of MSC may collectively enhance their long-term beneficial effects on OA. Methods and Results: Recently, we have shown that PPARß/δ inhibition using a commercially available antagonist in murine MSC increases their immunoregulatory potential in vitro as well as their therapeutic potential in an experimental murine arthritis model. Here, we relied on an innovative strategy to inhibit PPARß/δ:NF-κB TF65 subunit interaction in human MSC by designing and synthesizing an interfering peptide, referred to PP11. Through RT-qPCR experiments, we evidenced that the newly synthesized PP11 peptide reduced the expression level of PDK4, a PPARß/δ target gene, but did not modify the expression levels of ACOX1 and CPT1A, PPARα target genes, and FABP4, a PPARγ target gene compared with untreated human MSC. Moreover, we showed that human MSCs pretreated with PP11 exhibit a significantly higher capacity to inhibit the proliferation of activated PBMC and to decrease the frequency of M1-like macrophages. Conclusions: We designed and synthesized an interfering peptide that potently and specifically blocks PPARß/δ activity with concomitant enhancement of MSC immunoregulatory properties.

18.
Front Endocrinol (Lausanne) ; 13: 921073, 2022.
Article in English | MEDLINE | ID: mdl-36465661

ABSTRACT

The common cellular origin between bone marrow adipocytes (BMAds) and osteoblasts contributes to the intimate link between bone marrow adipose tissue (BMAT) and skeletal health. An imbalance between the differentiation ability of BMSCs towards one of the two lineages occurs in conditions like aging or osteoporosis, where bone mass is decreased. Recently, we showed that the sodium-phosphate co-transporter PiT2/SLC20A2 is an important determinant for bone mineralization, strength and quality. Since bone mass is reduced in homozygous mutant mice, we investigated in this study whether the BMAT was also affected in PiT2-/- mice by assessing the effect of the absence of PiT2 on BMAT volume between 3 and 16 weeks, as well as in an ovariectomy-induced bone loss model. Here we show that the absence of PiT2 in juveniles leads to an increase in the BMAT that does not originate from an increased adipogenic differentiation of bone marrow stromal cells. We show that although PiT2-/- mice have higher BMAT volume than control PiT2+/+ mice at 3 weeks of age, BMAT volume do not increase from 3 to 16 weeks of age, leading to a lower BMAT volume in 16-week-old PiT2-/- compared to PiT2+/+ mice. In contrast, the absence of PiT2 does not prevent the increase in BMAT volume in a model of ovariectomy-induced bone loss. Our data identify SLC20a2/PiT2 as a novel gene essential for the maintenance of the BMAd pool in adult mice, involving mechanisms of action that remain to be elucidated, but which appear to be independent of the balance between osteoblastic and adipogenic differentiation of BMSCs.


Subject(s)
Bone Diseases, Metabolic , Osteoporosis , Female , Mice , Animals , Bone Marrow , Adipose Tissue , Osteoporosis/genetics , Bone Density
19.
Int J Pharm ; 624: 121941, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35781028

ABSTRACT

Approximately 40% of cases of lower back pain are caused by disc degeneration disease (DDD). It is well established that microRNA (miR) dysregulation is a key player in various diseases, and its impact on DDD has recently been highlighted. RNAi (miR in particular) is increasingly being considered as a novel therapeutic tool. However, free miR is degraded rapidly in vivo, and its protection is thus a prerequisite. Nanoparticular platforms, such as lipid nanocapsules (LNC), could be specifically adapted for miR delivery, allowing the transfer and release of miR in the cell cytoplasm. The objective of the current study was to formulate and characterize miR-loaded LNC to establish their in vitro potential (cell internalization, bioactivity) as well as to determine the safety and feasibility of in situ intervertebral disc (IVD) injection of miR LNC in a healthy sheep model. Using a miR library, miR-155 was clearly identified as being involved in the DDD process and was selected for further assessment. miR-155-loaded LNC (miR-155 LNC) were successfully formulated using a phase inversion process, with the addition of lipoplexes in the cooling step. Following purification, miR-155 LNC were fully characterized, and the optimized formulation had an average diameter of 75 nm, a polydispersity index below 0.1, and a positive zeta potential. By fluorescence spectroscopy, an encapsulation efficiency (EE) of 75.6% and a drug loading (DL) of 0.6% were obtained, corresponding to a sufficient amount of miR per mL of LNC to potentially have a biological effect. The sustained release of miR-155 from LNC was demonstrated compared with free miR-155: only 22% was released after 2 h and 58% after 24 h. miR-155 protection against endonuclease degradation by LNC was confirmed by gel electrophoresis, a sine qua non condition for it to be administered in vivo. Cell viability assays were performed on human adipose stromal cells (hASCs) and ovine Nucleus pulposus cells (oNP), and a cytotoxicity of <30% was obtained at the considered concentrations. Additionally, miR-155 LNC cell internalization was demonstrated by flow cytometry and confocal imaging. Moreover, downregulation of total ERK1/2 in hASCs and oNP cells, after miR-155 LNC treatment, was demonstrated by Western blot and quantitative reverse-transcription PCR (qRT-PCR), thus confirming maintenance of its bioactivity after formulation and internalization. Finally, the feasibility and safety of miR-155 LNC in situ injection (compared to control groups: blank LNC and sham condition) was demonstrated in healthy sheep by imaging (MRI and T2wsi measurement) and histology (Boos' scoring) analysis. T2wsi was measured, and no significant difference was observed three months after the injection between the different conditions. No histological impact was observed, with no significant difference in Boos' scoring between the different conditions. All these results suggest LNC may be a potent strategy for the encapsulation and delivery of miR (particularly miR-155) and can be considered as a first step towards IVD regenerative medicine.


Subject(s)
Intervertebral Disc Degeneration , MicroRNAs , Nanocapsules , Animals , Down-Regulation , Humans , Intervertebral Disc Degeneration/drug therapy , Intervertebral Disc Degeneration/pathology , Lipids/chemistry , Nanocapsules/chemistry , Sheep
20.
Cell Physiol Biochem ; 56(3): 270-281, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35712829

ABSTRACT

BACKGROUND/AIMS: Interleukin 33 (IL-33) plays a significant role in immunity but its role in bone physiology and periodontitis needs to be further investigated. The aim of this study was to decipher the contribution of IL-33 to bone homeostasis under physiological conditions, and to alveolar bone loss associated with experimental periodontitis (EP) in IL-33 knockout (KO) mice and their wildtype (WT) littermates. METHODS: The bone phenotype of IL-33 KO mice was studied in the maxilla, femur, and fifth lumbar vertebra by micro-computed tomography (micro-CT). EP was induced by a ligature soaked with the periopathogen Porphyromonas gingivalis (Pg) around a maxillary molar. Alveolar bone loss was quantified by micro-CT. The resorption parameters were assessed via toluidine blue staining on maxillary sections. In vitro osteoclastic differentiation assays using bone marrow cells were performed with or without lipopolysaccharide from Pg (LPS-Pg). RESULTS: First, we showed that under physiological conditions, IL-33 deficiency increased the trabecular bone volume/total volume ratio (BV/TV) of the maxillary bone in male and female mice, but not in the femur and fifth lumbar vertebra, suggesting an osteoprotective role for IL-33 in a site-dependent manner. The severity of EP induced by Pg-soaked ligature was increased in IL-33 KO mice but in female mice only, through an increase in the number of osteoclasts. Moreover, osteoclastic differentiation from bone marrow osteoclast progenitors in IL-33-deficient female mice is enhanced in the presence of LPS-Pg. CONCLUSION: Taken together, our data demonstrate that IL-33 plays a sex-dependent osteoprotective role both under physiological conditions and in EP with Pg.


Subject(s)
Alveolar Bone Loss , Interleukin-33 , Periodontitis , Alveolar Bone Loss/microbiology , Animals , Female , Interleukin-33/deficiency , Interleukin-33/genetics , Lipopolysaccharides , Male , Mice , Mice, Knockout , Osteoclasts , Periodontitis/microbiology , Porphyromonas gingivalis/pathogenicity , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL