Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36296864

ABSTRACT

Laser printing has become a promising alternative for large-scale fabrication of functional devices. Here, laser-induced forward transfer (LIFT) of nanosilica was successfully achieved using a lower-cost nanosecond laser with a center wavelength of 1064 nm. To enhance the light absorption of silica, a small amount of graphene oxide (GO) was added to the fumed silica. Investigations were conducted to give an insight into the role of GO in the LIFT process. Pattern deposition was achieved with a minimum line width of 221 µm. The scattering can be tuned from ~2.5% to ~17.5% by changing the laser fluence. The patternable transparent display based on laser transferred nanosilica (LTNS) film was also demonstrated, showing its capability to deliver information on multiple levels. This LIFT based technique promotes fast, flexible, and low-cost manufacturing of scattering-based translucent screens or patterns for transparent displays.

SELECTION OF CITATIONS
SEARCH DETAIL