Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Biomed Pharmacother ; 180: 117417, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39298909

ABSTRACT

The effect of baicalin methyl ester (BME) on the regulation of mice intestinal barrier in the inflammatory response was studied in vivo and in vitro. Thirty six C57/BL mice were randomly divided into six groups (n = 6): control group; LPS group (LPS 3.5 mg/kg given intraperitoneal [ip] on day 7 of the study only), PBS group, and three BME groups (low: 50 mg/kg; medium: 100 mg/kg; high: 200 mg/kg) orally dosed with BME for 7d and LPS ip on day 7. All mice were sacrificed on day 8, and jejunum tissue collected for histopathology (H&E and PAS staining), protein expression of pro-inflammatory factors (TNF-α, IL-6, IL-8, IFN-γ) by ELISA, and intestinal tight junction proteins (ZO-1, occludin, claudin-1 and claudin-4) by Western Blot. Compared with the control group, LPS significantly increased the serum cytokines DAO (p < 0.01) and DLA (p < 0.01), upregulated the expression of pro-inflammatory factors, MLCK proteins (p <0.05) and increased the MLCK/ZO-1ratio (p <0.001). LPS also decreased the expression of claudin-4 (p < 0.01) in the jejunum and induced an inflammatory response damaging the jejunal mucosal barrier. Pretreatment with BME (100-200 mg/kg) significantly decreased the cytokines DAO (p < 0.05) and DLA (p < 0.01) in the serum, pro-inflammatory factors in the jejunum, significantly down-regulated the expression of MLCK (p <0.05) and the ratio of MLCK/ZO-1(p <0.001) but upregulated the expressions of ZO-1(p < 0.01), occludin (p < 0.05), claudin-1(p < 0.05) and claudin-4 (p < 0.05), and thereby restored the intestinal tissue structure, suggestive of alleviation of LPS-induced intestinal inflammation by BME. In vitro, MODE-K cells (derived from mice intestinal epithelium) were exposed to BME at 0 (control group-No LPS), 10, 20 and 40 µM BME for 24 h prior to LPS addition at 50 µg/mL for 2 h. LPS significantly increased the expression of pro-inflammatory factors, MLCK (p < 0.01) and the ratio of MLCK/ZO-1(p <0.001), decreased the expressions of ZO-1 (p < 0.05), occludin (p < 0.01), claudin-1 (p < 0.01) and claudin-4 (p < 0.01) in MODE-K cells compared with the control group. Compared with the LPS group, BME (10 - 40 µM) significantly decreased the expression of pro-inflammatory factors, MLCK (p < 0.05) and the ratio of MLCK/ZO-1(p <0.01) but increased the expressions of ZO-1(p < 0.01), occludin (p < 0.05) and claudin-4(p < 0.01) indicating an up-regulation of the expression of tight junction proteins by BME. On addition of extrinsic TNF-α plus LPS, the TNF- α level increased (p < 0.001) in MODE-K cells and the protein expression of MLCK (p < 0.01) was markedly up-regulated. Molecular docking predicted BME interacted with P65 by forming hydrogen bonds. IP-WB further confirmed that BME was directly bound to P65 protein in MODE-K cells. In conclusion, BME was able to restore the intestinal barrier through the P65 / TNF-α / MLCK / ZO-1 signaling pathway.

2.
PLoS Pathog ; 20(9): e1012513, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39264911

ABSTRACT

Porcine circovirus type 2 (PCV2) often causes disease through coinfection with other bacterial pathogens, including Glaesserella parasuis (G. parasuis), which causes high morbidity and mortality, but the role played by PCV2 and bacterial and host factors contributing to this process have not been defined. Bacterial attachment is assumed to occur via specific receptor-ligand interactions between adhesins on the bacterial cell and host proteins adsorbed to the implant surface. Mass spectrometry (MS) analysis of PCV2-infected swine tracheal epithelial cells (STEC) revealed that the expression of Extracellular matrix protein (ECM) Fibronectin (Fn) increased significantly on the infected cells surface. Importantly, efficient G. parasuis serotype 4 (GPS4) adherence to STECs was imparted by interactions with Fn. Furthermore, abrogation of adherence was gained by genetic knockout of Fn, Fn and Integrin ß1 antibody blocking. Fn is frequently exploited as a receptor for bacterial pathogens. To explore the GPS4 adhesin that interacts with Fn, recombinant Fn N-terminal type I and type II domains were incubated with GPS4, and the interacting proteins were pulled down for MS analysis. Here, we show that rare lipoprotein A (RlpA) directly interacts with host Fibronectin mediating GPS4 adhesion. Finally, we found that PCV2-induced Fibronectin expression and adherence of GPS4 were prevented significantly by TGF-ß signaling pathway inhibitor SB431542. Our data suggest the RlpA-Fn interaction to be a potentially promising novel therapeutic target to combat PCV2 and GPS4 coinfection.


Subject(s)
Circovirus , Fibronectins , Haemophilus parasuis , Swine Diseases , Trachea , Animals , Swine , Fibronectins/metabolism , Swine Diseases/virology , Swine Diseases/microbiology , Swine Diseases/metabolism , Haemophilus parasuis/metabolism , Circovirus/metabolism , Circovirus/pathogenicity , Trachea/virology , Trachea/microbiology , Trachea/metabolism , Haemophilus Infections/microbiology , Haemophilus Infections/virology , Haemophilus Infections/metabolism , Bacterial Adhesion , Serogroup , Coinfection/virology , Coinfection/microbiology , Pasteurellaceae Infections/veterinary , Pasteurellaceae Infections/virology , Pasteurellaceae Infections/microbiology , Pasteurellaceae Infections/metabolism
3.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39204128

ABSTRACT

Siraitia grosvenorii has anti-inflammatory, antioxidant, and immune-regulating effects, while macrophages play an important role in reducing inflammation. However, it is still unclear whether Siraitia grosvenorii extract (SGE) is effective in reducing inflammation by regulating macrophages. This study investigated the regulatory effect of SGE on macrophage polarization in a lipopolysaccharide (LPS)-induced intestinal inflammation model after establishing the model in vitro and in vivo. The results from the in vivo model showed that, compared with the LPS group, SGE significantly improved ileal morphology, restored the ileal mucosal barrier, and reduced intestinal and systemic inflammation by increasing CD206 and reducing iNOS proteins. In the in vitro model, compared with the LPS group, SGE significantly reduced the expression of iNOS protein and cytokines (TNF-α, IL-1ß, and IFN-γ) while significantly increasing the protein expression of CD206 in RAW264.7 cells. In conclusion, SGE can alleviate intestinal inflammation, protect the mucus barrier, and block the systemic immunosuppressive response by increasing M2 macrophages.

4.
Front Genet ; 15: 1402663, 2024.
Article in English | MEDLINE | ID: mdl-39045324

ABSTRACT

Background: Disulfidptosis and ferroptosis are forms of programmed cell death that may be associated with the pathogenesis of periodontitis. Our study developed periodontitis-associated biomarkers combining disulfidptosis and ferroptosis, which provides a new perspective on the pathogenesis of periodontitis. Methods: Firstly, we obtained the periodontitis dataset from public databases and found disulfidptosis- and ferroptosis-related differentially expressed transcripts based on the disulfidptosis and ferroptosis transcript sets. After that, transcripts that are tissue biomarkers for periodontitis were found using three machine learning methods. We also generated transcript subclusters from two periodontitis microarray datasets: GSE16134 and GSE23586. Furthermore, three transcripts with the best classification efficiency were further screened. Their expression and classification efficacy were validated using qRT-PCR. Finally, periodontal clinical indicators of 32 clinical patients were collected, and the correlation between three transcripts above and periodontal clinical indicators was analyzed. Results: We identified six transcripts that are tissue biomarkers for periodontitis, the top three transcripts with the best classification, and delineated two expression patterns in periodontitis. Conclusions: Our study found that disulfidptosis and ferroptosis were associated with immune responses and may involve periodontitis genesis.

5.
J Ethnopharmacol ; 334: 118525, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38992402

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Reproductive ability of sows is a primary element influencing the development of pig farming. Herbal extracts of Angelica sinensis (Oliv.) Diels, Astragalus mongholicus Bunge, Eucommia ulmoides Oliv., and Polypodium glycyrrhiza D.C.Eaton showed effects on improvement of reproduction in sows. AIMS OF THE STUDY: To investigate the mechanism of the treatment effects by a compound of these four Chinese herbs in a 1:1:1:1 ratio (ALAE) on endometriosis, endometritis, uterine adhesion, intrauterine growth retardation, pre-eclampsia, and its enhancement of reproductive efficiency in sows. MATERIALS AND METHODS: Active components of ALAE were identified by using ultra-performance liquid chromatography-mass spectrometry analysis and network pharmacology. Then we used the results to construct a visualization network. Key targets and pathways of ALAE involved in sow reproduction improvement were validated in sow animals and porcine endometrial epithelial cells (PEECs). RESULTS: A total of 62 active compounds were found in ALAE (41 in Polypodium glycyrrhiza D.C.Eaton, 5 in Astragalus mongholicus Bunge, 11 in Eucommia ulmoides Oliv., 5 in Angelica sinensis (Oliv.) Diels) with 563 disease-related targets (e.g. caspase-3, EGFR, IL-6) involved in EGFR tyrosine kinase inhibitor resistance, PI3K-AKT, and other signaling pathways. Molecular docking results indicated GC41 (glabridin), GC18 (medicarpin), EGFR and CCND1 are possible key components and target proteins related to reproductive improvement in sows. In PEECs, EGFR expression decreased at the mRNA and protein levels by three doses (160, 320, and 640 µg/mL) of ALAE. The phosphorylation of downstream pathway PI3K-AKT1 was enhanced. The expression of inflammatory factors (IL-6, IL-1ß), ESR1 and caspase-3 decreased through multiple pathways. Additionally, the expression levels of an anti-inflammatory factor (IL-10), angiogenesis-related factors (MMP9, PIGF, PPARγ, IgG), and placental junction-related factors (CTNNB1, occludin, and claudin1) increased. Furthermore, the total born number of piglets, the number of live and healthy litters were significantly increased. The number of stillbirths decreased by ALAE treatment in sow animals. CONCLUSIONS: Dministration of ALAE significantly increased the total number of piglets born, the numbers of live and healthy litters and decreased the number of stillbirths through improving placental structure, attenuating inflammatory response, modulating placental angiogenesis and growth factor receptors in sows. The improvement of reproductive ability may be related to activation of the EGFR-PI3K-AKT1 pathway in PEECs. Moreover, ALAE maybe involved in modulation of estrogen receptors, apoptotic factors, and cell cycle proteins.


Subject(s)
Drugs, Chinese Herbal , Network Pharmacology , Reproduction , Animals , Female , Swine , Reproduction/drug effects , Drugs, Chinese Herbal/pharmacology , Signal Transduction/drug effects , Endometrium/drug effects , Endometrium/metabolism , Cells, Cultured , Pregnancy
6.
Vet Microbiol ; 294: 110127, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797057

ABSTRACT

Glaesserella parasuis (G. parasuis) is a common Gram-negative commensal bacterium in the upper respiratory tract of swine that can cause Glässer's disease under stress conditions. Pyroptosis is an important immune defence mechanism of the body that plays a crucial role in clearing pathogen infections and endogenous danger signals. This study aimed to investigate the mechanism of G. parasuis serotype 5 SQ (GPS5-SQ)-induced pyroptosis in swine tracheal epithelial cells (STECs). The results of the present study demonstrated that GPS5-SQ infection induces pyroptosis in STECs by enhancing the protein level of the N-terminal domain of gasdermin D (GSDMD-N) and activating the NOD-like receptor protein 3 (NLRP3) inflammasome. Furthermore, the levels of pyroptosis-related proteins, including GSDMD-N and cleaved caspase-1 were considerably decreased in STECs after the knockdown of retinoic acid inducible gene-I (RIG-I) and mitochondrial antiviral signaling protein (MAVS). These results indicated that GPS5-SQ might trigger pyroptosis through the activation of the RIG-I/MAVS/NLRP3 signaling pathway. More importantly, the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) repressed the activation of the RIG-I/MAVS/NLRP3 signaling and rescued the decrease in Occludin and zonula occludens-1 (ZO-1) after GPS5-SQ infection. Overall, our findings show that GPS5-SQ can activate RIG-I/MAVS/NLRP3 signaling and destroy the integrity of the epithelial barrier by inducing ROS generation in STECs, shedding new light on G. parasuis pathogenesis.


Subject(s)
Epithelial Cells , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Signal Transduction , Animals , Epithelial Cells/microbiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Swine , Haemophilus parasuis/pathogenicity , Haemophilus parasuis/genetics , Trachea/microbiology , Trachea/cytology , Swine Diseases/microbiology , Serogroup , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Inflammasomes/metabolism , Inflammasomes/genetics , DEAD Box Protein 58/genetics , DEAD Box Protein 58/metabolism , Haemophilus Infections/veterinary , Haemophilus Infections/microbiology
7.
Vet Microbiol ; 288: 109954, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104440

ABSTRACT

Clinically, Porcine circovirus type 2 (PCV2) often causes disease through coinfection with other bacterial pathogens, including Glaesserella parasuis (G. parasuis), which causes high morbidity and mortality. However, the mechanism of PCV2 and G. parasuis serotype 4 (GPS4) co-infection is still not fully understood. In this study, swine tracheal epithelial cells (STEC) were used as a barrier model, and our results showed that PCV2 infection increased the adhesion of GPS4 to STEC, while decreasing the levels of ZO-1, Occludin and increasing tracheal epithelial permeability, and ultimately facilitated GPS4 translocation. Snail1 is a transcriptional repressor, and has been known to induce epithelial-to-mesenchymal transition (EMT) during development or in cancer metastasis. Importantly, we found that Snail1, as a transcriptional repressor, was crucial in destroying the tracheal epithelial barrier induced by PCV2, GPS4, PCV2 and GPS4 coinfection. For the first time, we found that PCV2, GPS4, PCV2 and GPS4 coinfection cross-activates TGF-ß and p38/MAPK signaling pathways to upregulate the expression of Snail1, down-regulate the levels of ZO-1 and Occludin, and thus disrupt the integrity of tracheal epithelial barrier then promoting GPS4 translocation. Finally, PCV2 and GPS4 co-infection also can activate TGF-ß and p38/MAPK signaling pathways in vivo and upregulate Snail1, ultimately down-regulating the expression of ZO-1 and Occludin. Our study elucidates how PCV2 infection promotes GPS4 to breach the tracheal epithelial barrier and aggravate clinical manifestations.


Subject(s)
Circoviridae Infections , Circovirus , Coinfection , Swine Diseases , Swine , Animals , Circovirus/physiology , Coinfection/microbiology , Coinfection/veterinary , Occludin , Serogroup , Intercellular Junctions/pathology , Transforming Growth Factor beta , Epithelium/pathology , Circoviridae Infections/veterinary
8.
Nat Commun ; 14(1): 2480, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120581

ABSTRACT

Synthesis of capsular polysaccharide (CPS), an important virulence factor of pathogenic bacteria, is modulated by the CpsBCD phosphoregulatory system in Streptococcus. Serine/threonine kinases (STKs, e.g. Stk1) can also regulate CPS synthesis, but the underlying mechanisms are unclear. Here, we identify a protein (CcpS) that is phosphorylated by Stk1 and modulates the activity of phosphatase CpsB in Streptococcus suis, thus linking Stk1 to CPS synthesis. The crystal structure of CcpS shows an intrinsically disordered region at its N-terminus, including two threonine residues that are phosphorylated by Stk1. The activity of phosphatase CpsB is inhibited when bound to non-phosphorylated CcpS. Thus, CcpS modulates the activity of phosphatase CpsB thereby altering CpsD phosphorylation, which in turn modulates the expression of the Wzx-Wzy pathway and thus CPS production.


Subject(s)
Streptococcus suis , Phosphorylation , Streptococcus suis/metabolism , Polysaccharides, Bacterial/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Phosphoric Monoester Hydrolases/metabolism , Bacterial Capsules/metabolism
9.
Vet Microbiol ; 278: 109663, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36680971

ABSTRACT

Coinfection of Porcine circovirus type 2 (PCV2) and Glaesserella parasuis type 4 (GPS4) is widespread clinically, resulting in high morbidity and mortality, however, interactions between the two pathogens during coinfection and the coinfection pathogenesis are poorly understood. In this study, a piglet model coinfected with PCV2 and GPS4 was established; coinfection of the piglets' group showed more obvious symptoms, such as high fever and emaciation, and more severe histological lesions appeared in various organs. Importantly, piglets in the coinfection group produced lower levels of PCV2 and GPS4 antibodies, and showed high levels of inflammatory cytokines, TLR2, and TLR4, while the levels of CD4, CD8, MHC II, costimulatory molecules, and IL-12p40 were decreased. In addition, a model of macrophage 3D4/21 cells coinfection with PCV2 and GPS4 was established, coinfected cells exhibited increased expression of the cytokines IL-6, IL-8, TNF-α, IL-1ß, and the receptors TLR2, TLR4, while decreased MHC II. We further demonstrate that cytokine production is associated with the activation of NF-κB and NLRP3 inflammasome signaling pathways, and TLR4 is also involved. Altogether, our findings suggest that coinfection with PCV2 and GPS4 exacerbates the inflammatory response, resulting in severe tissue damage, and probably impaired macrophage antigen presentation and T cell activation, resulting in immune dysregulation, aggravating host infection.


Subject(s)
Circoviridae Infections , Circovirus , Coinfection , Swine Diseases , Animals , Swine , Circoviridae Infections/complications , Circoviridae Infections/veterinary , Coinfection/veterinary , Virulence , Serogroup , Toll-Like Receptor 2 , Toll-Like Receptor 4 , Cytokines
10.
Mater Horiz ; 10(2): 646-656, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36533533

ABSTRACT

Fascinating properties are displayed by high-performance ionogel-based flexible strain sensors, thereby gaining increasing attention in various applications ranging from human motion monitoring to soft robotics. However, the integration of excellent properties such as optical and mechanical properties and satisfactory sensing performance for one ionogel sensor is still a challenge. In particular, fatigue-resistant and self-healing properties are essential to continuous sensing. Herein, we design a flexible ion-conductive sensor based on a multifunctional ionogel with a double network using polyacrylamide, amino-modified agarose, 1,3,5-benzenetricarboxaldehyde and 1-ethyl-3-methylimidazolium chloride. The ionogel exhibits comprehensive properties including high transparency (>95%), nonflammability, strong adhesion and good temperature tolerance (about -96 to 260 °C), especially adaptive for extreme conditions. The dynamic imine bonds and abundant hydrogen bonds endow the ionogel with excellent self-healing capability, to realize rapid self-repair within minutes, as well as good mechanical properties and ductility to dissipate input energy and realize high resilience. Notably, unexpected fluorescence has been observed for the ionogel because of the gelation-induced emission phenomenon. Flexible strain sensors prepared directly from ionogels can sensitively monitor and differentiate various human motions, exhibiting a fast response time (38 ms), high sensitivity (gauge factor = 3.13 at 800% strain), good durability (>1000 cycles) and excellent stability over a wide temperature range (-30 to 80 °C). Therefore, the prepared ionogel as a high-performance flexible strain sensor in this study shows tremendous potential in wearable devices and soft ionotronics.


Subject(s)
Wearable Electronic Devices , Humans , Chlorides/chemistry , Coloring Agents/chemistry , Electric Conductivity , Motion , Fluorescence
11.
PLoS Pathog ; 18(10): e1010912, 2022 10.
Article in English | MEDLINE | ID: mdl-36228044

ABSTRACT

Glaesserella parasuis (G. parasuis), the primary pathogen of Glässer's disease, colonizes the upper respiratory tract and can break through the epithelial barrier of the respiratory tract, leading to lung infection. However, the underlying mechanisms for this adverse effect remain unclear. The G. parasuis serotype 5 SQ strain (HPS5-SQ) infection decreased the integrity of piglets' lung Occludin and Claudin-1. Autophagy regulates the function of the epithelial barrier and tight junction proteins (TJs) expression. We tested the hypothesis that HPS5-SQ breaking through the porcine respiratory epithelial barrier was linked to autophagy and Claudin-1 degradation. When HPS5-SQ infected swine tracheal epithelial cells (STEC), autophagosomes encapsulated, and autolysosomes degraded oxidatively stressed mitochondria covered with Claudin-1. Furthermore, we found that autophagosomes encapsulating mitochondria resulted in cell membrane Claudin-1 being unable to be replenished after degradation and damaged the respiratory tract epithelial barrier. In conclusion, G. parasuis serotype 5 breaks through the porcine respiratory epithelial barrier by inducing autophagy and interrupting cell membrane Claudin-1 replenishment, clarifying the mechanism of the G. parasuis infection and providing a new potential target for drug design and vaccine development.


Subject(s)
Haemophilus Infections , Haemophilus parasuis , Swine Diseases , Swine , Animals , Claudin-1/metabolism , Occludin/metabolism , Serogroup , Haemophilus parasuis/metabolism , Autophagy , Cell Membrane , Tight Junction Proteins/metabolism , Trachea
12.
J Basic Microbiol ; 62(11): 1360-1370, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35736630

ABSTRACT

α-Glucosidase is the key enzyme on carbohydrate metabolism, and its bioactive inhibitors are supposed to be an effective therapeutic for type 2 diabetes mellitus. During our continuing study for discovering α-glucosidase inhibitors, a fungus GDZZ-G2 which is derived from a medicinal plant Callicarpa kwangtungensis Chun, exhibited significant inhibition on α-glucosidase. The strain was identified as Fusarium incarnatum by morphological and molecular methods. Further bioassay-guided fractionation result in six known secondary metabolites (1-6). All the compounds except 4 were isolated from F. incarnatum for the first time. Among them, an anthraquinonoid (S)-1,3,6-trihydroxy-7-(1-hydroxyethyl)anthracene-9,10-dione (compound 1) exhibited strong inhibitory effect against α-glucosidase (IC50 = 77.67 ± 0.67 µΜ), compared with acarbose (IC50 = 711.8 ± 5 µΜ). An enzyme kinetics analysis revealed that compound 1 was an uncompetitive inhibitor. Besides, docking simulations predicted that compound 1 inhibited α-glucosidase substrate complex by binding Gln322, Gly306, Thr307, and Ser329 through hydrogen-bond interactions. Our findings suggested that compound 1 can be considered a lead compound for further modifications and the development of a new effective drug candidate in the treatment of type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2 , Fusarium , alpha-Glucosidases , Diabetes Mellitus, Type 2/drug therapy , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Fusarium/metabolism , Molecular Docking Simulation , Kinetics
13.
Chem Biol Interact ; 360: 109948, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35430257

ABSTRACT

Xanthine oxidase (XO) catalyzes the oxidation of hypoxanthine to xanthine, which is further converted to uric acid. The excessive production or reduced excretion of the purine terminal metabolite may lead to hyperuricemia. In our ongoing search for new xanthine oxidase inhibitors, 14 endophytic fungi were isolated for the first time from a medicinal plant Callicarpa kwangtungensis Chun, and the ethyl acetate extracts of their culture filtrates were screened for XO inhibitory activity. The extract from an endophytic fungus, characterized as Alternaria alternata GDZZ-J6, exhibited the most potent inhibition of XO. Further fractionation of its secondary metabolites led to the isolation of six compounds. Among them, mycotoxin alternariol (AOH), a dibenzo-α-pyrone derivative, had strong inhibitory activity on XO, and the IC50 value was 0.23 ± 0.01 µM. The potency of XO inhibition by AOH was >12-fold higher as compared to allopurinol (2.98 ± 0.07 µM), a XO inhibitor that has been used clinically. The IC50 values of three dibenzo-α-pyrones from gut microbial metabolites of ellagic acid, urolithins A, B, and C, against XO were further compared, and their structure-activity relationships were discussed. Inhibition kinetic analysis by double-reciprocal Lineweaver-Burk plots demonstrated that AOH was an uncompetitive inhibitor. Follow-up docking studies showed that Gln957, Lys1257, and Phe1153 played an important role by forming hydrogen bonds with AOH. Our findings suggest that AOH may be used as a lead compound for further modification to develop future drug for treating hyperuricemia.


Subject(s)
Hyperuricemia , Mycotoxins , Enzyme Inhibitors/chemistry , Humans , Hyperuricemia/drug therapy , Kinetics , Lactones , Lead , Xanthine Oxidase/metabolism
14.
Front Genet ; 12: 747274, 2021.
Article in English | MEDLINE | ID: mdl-34777472

ABSTRACT

Genome-wide association studies have identified >100 genetic risk factors for rheumatoid arthritis. However, the reported genetic variants could only explain less than 40% heritability of rheumatoid arthritis. The majority of the heritability is still missing and needs to be identified with more studies with different approaches and populations. In order to identify novel function SNPs to explain missing heritability and reveal novel mechanism pathogenesis of rheumatoid arthritis, 4 HLA SNPs (HLA-DRB1, HLA-DRB9, HLA-DQB1, and TNFAIP3) and 225 common SNPs located in miRNA, which might influence the miRNA target binding or pre-miRNA stability, were genotyped in 1,607 rheumatoid arthritis and 1,580 matched normal individuals. We identified 2 novel SNPs as significantly associated with rheumatoid arthritis including rs1414273 (miR-548ac, OR = 0.84, p = 8.26 × 10-4) and rs2620381 (miR-627, OR = 0.77, p = 2.55 × 10-3). We also identified that rs5997893 (miR-3928) showed significant epistasis effect with rs4947332 (HLA-DRB1, OR = 4.23, p = 0.04) and rs2967897 (miR-5695) with rs7752903 (TNFAIP3, OR = 4.43, p = 0.03). In addition, we found that individuals who carried 8 risk alleles showed 15.38 (95%CI: 4.69-50.49, p < 1.0 × 10-6) times more risk of being affected by RA. Finally, we demonstrated that the targets of the significant miRNAs showed enrichment in immune related genes (p = 2.0 × 10-5) and FDA approved drug target genes (p = 0.014). Overall, 6 novel miRNA SNPs including rs1414273 (miR-548ac, p = 8.26 × 10-4), rs2620381 (miR-627, p = 2.55 × 10-3), rs4285314 (miR-3135b, p = 1.10 × 10-13), rs28477407 (miR-4308, p = 3.44 × 10-5), rs5997893 (miR-3928, p = 5.9 × 10-3) and rs45596840 (miR-4482, p = 6.6 × 10-3) were confirmed to be significantly associated with RA in a Chinese population. Our study suggests that miRNAs might be interesting targets to accelerate understanding of the pathogenesis and drug development for rheumatoid arthritis.

15.
Food Funct ; 12(19): 9380-9390, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34606537

ABSTRACT

Sucralose is one of the most widely used artificial sweeteners, free of nutrients and calories. Its approval and uses correlate with many of the worldwide epidemiological changes in inflammatory bowel disease (IBD). Multiple animal studies by us and others showed that sucralose exacerbated ileitis in SAMP1/YitFc mice and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats. In this study, we further investigated the effect of sucralose on dextran sulfate sodium (DSS)-induced colitis in mice and the associated mechanisms. Male C57BL/6 mice received 1.5 mg ml-1 sucralose in drinking water for 6 weeks. Then, 2.5% DSS was added to drinking water for 7 days to induce ulcerative colitis (UC). The results showed that, compared with the DSS group, administration of sucralose exacerbated the severity of colitis as indicated by the further decrease in body weight, increase in disease activity index (DAI) and the expression of pro-inflammatory cytokines, as well as the activation of the TLR5-MyD88-NF-κB signaling pathway, and the disturbances of intestinal barrier function, along with changes in the intestinal microbiota. Our findings indicate that sucralose may increase the susceptibility to DSS-induced colitis through causing dysbiosis of intestinal microbiota and damage to the intestinal barrier.


Subject(s)
Colitis, Ulcerative/etiology , Colitis, Ulcerative/microbiology , Gastrointestinal Microbiome , Sucrose/analogs & derivatives , Sweetening Agents/adverse effects , Animals , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Cytokines/metabolism , Dextran Sulfate , Disease Models, Animal , Disease Susceptibility , Dysbiosis/etiology , Intestinal Mucosa/pathology , Intestinal Mucosa/physiology , Male , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Severity of Illness Index , Signal Transduction , Sucrose/adverse effects , Toll-Like Receptor 5/metabolism
16.
Bioorg Chem ; 111: 104980, 2021 06.
Article in English | MEDLINE | ID: mdl-34004587

ABSTRACT

α-Glucosidase plays an important role in catalyzing the hydrolytic cleavage of disaccharides into monosaccharides. In this study, a phytochemical investigation of the potential α-glucosidase inhibitory fraction from the aerial parts of Euonymus fortunei led to the isolation and identification of two new tetracyclic triterpenoids, fortunenones A and B (1-2), together with 11 known triterpenoids (3-13). Fortunenones A and B are rare C32 triterpenoids possessing a 24,24-dimethyl group. The partial isolated compounds were evaluated their effects on α-glucosidase, of which echinochlorin D (5), lupenone (7), wilforlide B (12), and wilforlide A (13) exhibited remarkable inhibitory effects with the half inhibitory concentration ranged from 207.2 × 10-6 M to 388.3 × 10-6 M compared with the positive control, acarbose. An enzyme kinetics analysis by Lineweaver-Burk plots revealed that the inhibition types of the four active compounds were all mixed inhibition. Molecular docking further revealed that hydrophobic interactions and hydrogen bonds play an important role in the inhibition of α-glucosidase activity. Our results demonstrate the potential of E. fortunei extract and its constituents to inhibit α-glucosidase.


Subject(s)
Euonymus/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Triterpenes/pharmacology , alpha-Glucosidases/metabolism , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Molecular Docking Simulation , Molecular Structure , Saccharomyces cerevisiae/enzymology , Structure-Activity Relationship , Triterpenes/chemistry , Triterpenes/isolation & purification
17.
Front Oncol ; 10: 710, 2020.
Article in English | MEDLINE | ID: mdl-32582527

ABSTRACT

Sucralose is a calorie-free high-intensity artificial sweetener that is widely used in thousands of foods and beverages all over the world. Although it was initially regarded as a safe, inert food additive, its adverse effect on gut microbiota and health has drawn more and more attention as evidence accumulates. Studies by us and others revealed that sucralose exacerbated gut damage and inflammation in animal models for inflammatory bowel disease (IBD), including those for both ulcerative colitis, and Crohn's disease. Our study demonstrated that sucralose greatly aggravated dextran sulfate sodium (DSS)-induced colitis along with causing changes in gut microbiota, the gut barrier and impaired inactivation of digestive proteases mediated by deconjugated bilirubin. It is well-documented that IBD greatly increases the risk of colorectal cancer (CRC), the globally third-most-common cancer, which, like IBD, has a high rate in the developed countries. Azoxymethane (AOM)/DSS has been the most commonly used animal model for CRC. In this study, we further explored the effect of sucralose on tumorigenesis and the possible mechanism involved using the AOM/DSS mouse model. First, 1.5 mg/ml sucralose was included in the drinking water for 6 weeks to reach a relatively stable phase of impact on gut microbiota. Then, 10 mg/kg AOM was administered through intraperitoneal injection. Seven days later, 2.5% DSS was put in the drinking water for 5 days, followed by 2 weeks without DSS. The 5 days of DSS was then repeated, and the mice were sacrificed 6 weeks after AOM injection. The results showed that sucralose caused significant increases in the number and size of AOM/DSS-induced colorectal tumors along with changes in other parameters such as body and spleen weight, pathological scores, mortality, fecal ß-glucuronidase and digestive proteases, gut barrier molecules, gut microbiota, inflammatory cytokines and pathways (TNFα, IL-1ß, IL-6, IL-10, and TLR4/Myd88/NF-κB signaling), and STAT3/VEGF tumor-associated signaling pathway molecules. These results suggest that sucralose may increase tumorigenesis along with dysbiosis of gut microbiota, impaired inactivation of digestive protease, damage to the gut barrier, and exacerbated inflammation.

18.
Waste Manag ; 105: 289-298, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32092534

ABSTRACT

A novel heavy metal chelating agent, dithiocarboxylate-functionalized polyaminoamide dendrimer (PAMAM-0G-DTC), was evaluated for the stabilization of heavy metals from municipal solids waste incineration (MSWI) fly ash. PAMAM-0G-DTC achieved overall stabilization performance at a lower dosage (3% w/w) and a wider pH range (2-13) compared to conventional chelating agents such as sodium dimethyl dithiocarbamate (SDD) and dithiocarboxylate-functionalized tetraethylenepentamine (TEPA-DTC). The leaching toxicity of Pb and Cd in the MSWI fly ash by PAMAM-0G-DTC stabilization met the landfill requirements but could not be achieved by SDD and TEPA-DTC even at a 10 wt% concentration. Sequential chemical extraction of fly ash before and after stabilization shows that PAMAM-0G-DTC can be combined with active heavy metals in water-soluble, interchangeable, and carbonate states to form more stable heavy metals in organic and residual states. Mechanistic studies show that multiple PAMAM-0G-DTC molecules can combine with multiple heavy metals to form three-dimensional network-like super-molecular compounds with an infinite extension of space size. This makes the heavy metals more stable and embedded in the network-like super-molecular structure, thus minimizing the potential risk of leaching. Overall, by forming more geochemically stable phases, the treatment of fly ash with PAMAM-0G-DTC has a strong ability to reduce the toxic leaching of heavy metals at a lower dosage and suppress the risk of secondary pollution in a landfill at a wide range of pH values (2-13).


Subject(s)
Dendrimers , Metals, Heavy , Refuse Disposal , Carbon , Coal Ash , Incineration , Particulate Matter , Solid Waste
19.
Dermatology ; 236(2): 170-178, 2020.
Article in English | MEDLINE | ID: mdl-31434087

ABSTRACT

BACKGROUND: This study aimed to compare the Hospital Anxiety and Depression Scale (HADS) and the Zung Self-Rating Anxiety/Depression Scale (SAS/SDS) in evaluating anxiety and depression in psoriatic arthritis (PsA) patients. METHODS: A total of 70 PsA patients were enrolled. Demographic and clinical characteristics were collected after enrollment. HADS-A and SAS were used to evaluate the anxiety of PsA patients, while HADS-D and SDS were used to evaluate the depression of PsA patients. RESULTS: Similar results were observed in detecting the rate of anxiety by HADS-A and SAS (27.1 vs. 21.4%, p = 0.424), and there was no difference in classifying the severity of anxiety by HADS-A and SAS (p = 0.347). The Spearman test also disclosed that HADS-A score was positively associated with SAS score (p <0.001). The rates of depression were similar by HADS-D and SDS (27.1 vs. 40.0%; p = 0.108). However, different results were observed in grading the severity of anxiety by HADS-D and SDS (p = 0.009), and no correlation was observed between HADS-D and SDS scores (p = 0.138). The consumption of time for HADS assessment was shorter than that for SAS/SDS assessment (p < 0.001). In addition, a positive correlation of HADS-A score with patients' global assessment (PGA) (p = 0.022) and fatigue scores (p = 0.028) was discovered, and HADS-D score was positively associated with PGA score (p = 0.019). SAS or SDS score presented less correlation with clinical features of PsA patients, which illuminated that only SAS score was positively associated with duration of psoriasis (p = 0.030). CONCLUSION: HADS seems to be a better option for anxiety and depression assessment than SAS/SDS in PsA patients.


Subject(s)
Anxiety/diagnosis , Arthritis, Psoriatic/psychology , Depression/diagnosis , Health Status Indicators , Inpatients/psychology , Adult , Aged , Arthritis, Psoriatic/therapy , Female , Hospitalization , Humans , Male , Middle Aged , Self Report
20.
Am J Transl Res ; 11(8): 4650-4666, 2019.
Article in English | MEDLINE | ID: mdl-31497189

ABSTRACT

This study aimed to investigate the effect of lnc-ITSN1-2 knockdown on cell proliferation, apoptosis, inflammation and mRNA expression patterns in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), and the correlation of its synovium tissue expression with disease risk, inflammatory cytokines and disease activity of RA. Control shRNA plasmids and lnc-ITSN1-2 shRNA plasmids were transfected into RA FLS, and then cell proliferation, apoptosis, inflammatory cytokines expressions were evaluated. Subsequently, mRNA sequencing and bioinformatics analyses were conducted, and rescue experiment of nucleotide-binding oligomerization domain 2 (NOD2) mRNA overexpression on alleviating the functions of lnc-ITSN1-2 was performed. Additionally, lnc-ITSN1-2 and NOD2 mRNA expressions in synovial tissue in 30 RA patients and 15 controls were measured. Lnc-ITSN1-2 expression was increased in RA FLS compared with normal FLS. Lnc-ITSN1-2 knockdown inhibited RA FLS proliferation and inflammation while promoted RA FLS apoptosis. mRNA sequencing and bioinformatics analyses revealed 144 upregulated and 98 downregulated genes by lnc-ITSN1-2 knockdown, which were enriched in regulating inflammatory responses and cytokines related pathways. NOD2 was selected for rescue experiment, which disclosed that upregulating NOD2 alleviated the effect of lnc-ITSN1-2 knockdown on cell proliferation, apoptosis and inflammation in RA FLS. In addition, synovial tissue lnc-ITSN1-2 positively associated with NOD2 mRNA, and both of them positively correlated with disease risk, inflammation and activity of RA. Downregulation of lnc-ITSN1-2 correlates with decreased disease risk and activity of RA, and reduces RA FLS proliferation and inflammation via regulating NOD2/RIP2 signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL