Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters








Publication year range
1.
J Chem Phys ; 123(6): 64710, 2005 Aug 08.
Article in English | MEDLINE | ID: mdl-16122338

ABSTRACT

In this work continuum and lattice Monte Carlo simulation methods are used to study the adsorption of linear and comb polymers on flat surfaces. Selected polymer segments, located at the tips of the side chains in comb polymers or equally spaced along the linear polymers, are attracted to each other and to the surface via square-well potentials. The rest of the polymer segments are modeled as tangent hard spheres in the continuum model and as self-avoiding random walks in the lattice model. Results are presented in terms of segment-density profiles, distribution functions, and radii of gyration of the adsorbed polymers. At infinite dilution the presence of short side chains promotes the adsorption of polymers favoring both a decrease in the depletion-layer thickness and a spreading of the polymer molecule on the surface. The presence of long side chains favors the adsorption of polymers on the surface, but does not permit the spreading of the polymers. At finite concentration linear polymers and comb polymers with long side chains readily adsorb on the solid surface, while comb polymers with short side chains are unlikely to adsorb. The simple models of comb copolymers with short side chains used here show properties similar to those of associating polymers and of globular proteins in aqueous solutions, and can be used as a first approximation to investigate the mechanism of adsorption of proteins onto hydrophobic surfaces.

2.
J Chem Phys ; 123(12): 124702, 2005 Sep 22.
Article in English | MEDLINE | ID: mdl-16392506

ABSTRACT

In this work we investigate how a pattern imposed in a copolymer film at a certain distance from the surface propagates through the film onto an adsorbing heterogeneous surface. We bias the copolymer film to adopt a specified target pattern and then use simulation to design a surface pattern that helps the adsorbed film to maintain that target pattern. We examine the effect of varying the copolymer chain length, the size of the target pattern, and the distance from the surface where the target pattern is applied, z', on the extent of pattern transfer. For each chain length, target pattern, and z' we compare the energy of the system when a pattern is applied in the bulk to the energy when no pattern is applied in order to understand why a certain pattern size is transferred to the surface with higher fidelity than the others. At constant chain length, pattern transfer is best when the pattern size brings the energy of the system close to the energy when no pattern is applied. At constant pattern size, pattern transfer is best in the systems with longer chains. This is because longer chains are more likely to adsorb as brushes and loops which then helps transfer the pattern through the adsorbed film down to the surface.


Subject(s)
Chemistry, Physical/methods , Polymers/chemistry , Adsorption , Computer Simulation , Models, Statistical , Molecular Conformation , Monte Carlo Method , Surface Properties
3.
J Chem Phys ; 120(4): 2049-55, 2004 Jan 22.
Article in English | MEDLINE | ID: mdl-15268341

ABSTRACT

We have developed a box length search algorithm to efficiently find the appropriate box dimensions for constant-volume molecular simulation of periodic structures. The algorithm works by finding the box lengths that equalize the pressure in each direction while maintaining constant total volume. Maintaining the volume at a fixed value ensures that quantitative comparisons can be made between simulation and experimental, theoretical or other simulation results for systems that are incompressible or nearly incompressible. We test the algorithm on a system of phase-separated block copolymers that has a preferred box length in one dimension. We also describe and test a Monte Carlo algorithm that allows the box lengths to change while maintaining constant volume. We find that the box length search algorithm converges at least two orders of magnitude more quickly than the variable box length Monte Carlo method. Although the box length search algorithm is not ergodic, it successfully finds the box length that minimizes the free energy of the system. We verify this by examining the free energy as determined by the Monte Carlo simulation.

4.
J Mol Biol ; 312(1): 187-202, 2001 Sep 07.
Article in English | MEDLINE | ID: mdl-11545596

ABSTRACT

Computer simulations are performed on a system of eight model peptide chains to study how the competition between protein refolding and aggregation affects the optimal conditions for refolding of four-helix bundles. The discontinuous molecular dynamics algorithm is utilized along with an intermediate-resolution protein model that we developed for this work. Physically, the model is much more detailed than any model used to date for simulations of protein aggregation. Each model residue consists of a detailed, three-bead backbone and a simplified, single-bead side-chain. Excluded volume, hydrogen bond, and hydrophobic interactions are modeled with discontinuous (i.e. hard-sphere and square-well) potentials. Simulations efficiently sample conformational space, and complete folding trajectories from random initial configurations to two four-helix bundles are possible within two days on a single processor workstation. Folding of the bundles follows two main pathways, one through a trimeric intermediate and the other through an intermediate with two dimers. The proportion of trajectories that follow each route is significantly different for the eight-peptide system in this work than in a previously studied four-peptide system, which yields one four-helix bundle, suggesting, as our previous simulations have, that protein folding properties are strongly influenced by the presence of other proteins. Folding of the bundles is optimal within a fixed temperature range, with the high-temperature boundary a function of the complexity of the protein (or oligomer) to be folded and the low-temperature boundary a function of the complexity of the protein's environment. Above the optimal temperature range for folding, the model chains tend to unfold; below the optimal range, the model chains tend to aggregate. As has been seen previously, aggregates have substantial levels of native secondary structure, suggesting that aggregates are composed largely of partially folded intermediates, not denatured chains.


Subject(s)
Protein Folding , Amino Acid Sequence , Computer Simulation , Dimerization , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Protein Conformation
5.
Proteins ; 44(3): 344-60, 2001 Aug 15.
Article in English | MEDLINE | ID: mdl-11455608

ABSTRACT

An intermediate-resolution model of small, homogeneous peptides is introduced, and discontinuous molecular dynamics simulation is applied to study secondary structure formation. Physically, each model residue consists of a detailed three-bead backbone and a simplified single-bead side-chain. Excluded volume and hydrogen bond interactions are constructed with discontinuous (i.e., hard-sphere and square-well) potentials. Simulation results show that the backbone motion of the model is limited to realistic regions of Phi-Psi conformational space. Model polyalanine chains undergo a locally cooperative transition to form alpha-helices that are stabilized by backbone hydrogen bonding, while model polyglycine chains tend to adopt nonhelical structures. When side-chain size is increased beyond a critical diameter, steric interactions prevent formation of long alpha-helices. These trends in helicity as a function of residue type have been well documented by experimental, theoretical, and simulation studies and demonstrate the ability of the intermediate-resolution model developed in this work to accurately mimic realistic peptide behavior. The efficient algorithm used permits observation of the complete helix-coil transition within 15 min on a single-processor workstation, suggesting that simulations of very long times are possible with this model.


Subject(s)
Peptides/chemistry , Alanine/chemistry , Computer Simulation , Energy Metabolism , Hydrogen Bonding , Models, Molecular , Protein Folding , Protein Structure, Secondary , Temperature
6.
Proteins ; 44(3): 376-91, 2001 Aug 15.
Article in English | MEDLINE | ID: mdl-11455611

ABSTRACT

Discontinuous molecular dynamics (DMD) simulation on an intermediate-resolution protein model is used to study the folding of an isolated, small model peptide to an amphipathic alpha-helix and the assembly of four of these model peptides into a four-helix bundle. A total of 129 simulations were performed on the isolated peptide, and 50 simulations were performed on the four-peptide system. Simulations efficiently sample conformational space allowing complete folding trajectories from random initial configurations to be observed within 15 min for the one-peptide system and within 15 h for the four-peptide system on a 500-MHz workstation. The native structures of both the alpha-helix and the four-helix bundle are consistent with experimental characterization studies and with results from previous simulations on these model peptides. In both the one- and four-peptide systems, the native state is achieved during simulations within an optimal temperature range, a phenomenon also observed experimentally. The ease with which our simulations yield reasonable estimates of folded structures demonstrates the power of the intermediate-resolution model developed for this work and the DMD algorithm and suggests that simulations of very long times and of multiprotein systems may be possible with this model.


Subject(s)
Peptides/chemistry , Protein Folding , Amino Acids/chemistry , Computer Simulation , Energy Transfer , Hydrogen Bonding , Models, Molecular , Polymers/chemistry , Protein Structure, Secondary
7.
Protein Sci ; 8(5): 1064-74, 1999 May.
Article in English | MEDLINE | ID: mdl-10338017

ABSTRACT

The "calorimetric criterion" is one of the important experimental approaches for determining whether protein folding is an "all-or-none" two-state transition (i.e., whether intermediates are present at equilibrium). The calorimetric criterion states that the equivalence of the "measured" calorimetric enthalpy change and the effective two-state van't Hoff enthalpy change demonstrates that there is a two-state transition. This paper addresses the essential question of whether the calorimetric criterion is a necessary and sufficient condition for a two-state process and shows that it is necessary but not sufficient by means of specific examples. Analysis of simple models indicates that the heat capacity curve, regardless of whether it originates from a two-state process or not, can always be decomposed in such a way that the calorimetric criterion is satisfied. Exact results for a three-state model and a homopolymer tetramer demonstrate that the deviation from the calorimetric criterion is not simply related to the population of intermediate states. Analysis of a three-helix bundle protein model, which has a two-state folding from a random coil to ordered (molten) globule, shows that the calorimetric criterion may not be satisfied if the standard linear interpolation of baselines (weighted or unweighted) is employed. A specific example also suggests that the more recently introduced deconvolution method is not necessarily better than the simple calorimetric criterion for distinguishing a two-state transition from a three-state transition. Although the calorimetric criterion is not a sufficient condition for a two-state process, it is likely to continue to be of practical utility, particularly when its results are shown to be consistent with those from other experimental methods.


Subject(s)
Calorimetry , Protein Folding , Models, Molecular , Models, Statistical , Temperature , Thermodynamics
8.
Protein Sci ; 7(12): 2642-52, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9865959

ABSTRACT

We present a study of the competition between protein refolding and aggregation for simple lattice model proteins. The effect of solvent conditions (i.e., the denaturant concentration and the protein concentration) on the folding and aggregation behavior of a system of simple, two-dimensional lattice protein molecules has been investigated via (dynamic Monte Carlo simulations. The population profiles and aggregation propensities of the nine most populated intermediate configurations exhibit a complex dependence on the solution conditions that can be understood by considering the competition between intra- and interchain interactions. Some of these configurations are not even seen in isolated chain simulations; they are observed to be highly aggregation prone and are stabilized primarily by the aggregation reaction in multiple-chain systems. Aggregation arises from the association of partially folded intermediates rather than from the association of denatured random-coil states. The aggregation reaction dominates over the folding reaction at high protein concentration and low denaturant concentration, resulting in low refolding yields at those conditions. However, optimum folding conditions exist at which the refolding yield is a maximum, in agreement with some experimental observations.


Subject(s)
Models, Molecular , Protein Denaturation , Protein Folding , Proteins/chemistry , Models, Chemical , Monte Carlo Method
9.
J Virol ; 72(2): 1020-7, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9444995

ABSTRACT

Theiler's murine encephalomyelitis virus (TMEV) induces immune-mediated demyelination after intracerebral inoculation of the virus into susceptible mouse strains. We isolated from a TMEV BeAn 8386 viral stock, a low-pathogenic variant which requires greater than a 10,000-fold increase in viral inoculation for the manifestation of detectable clinical signs. Intracerebral inoculation of this variant virus induced a strong, long-lasting, protective immunity from the demyelinating disease caused by pathogenic TMEV. The levels of antibodies to the whole virus as well as to the major linear epitopes were similar in mice infected with either the variant or wild-type virus. However, persistence of the variant virus in the central nervous system (CNS) of mice was significantly lower than that of the pathogenic virus. In addition, the T-cell response to the predominant VP1 (VP1(233-250)) epitope in mice infected with the variant virus was significantly weaker than that in mice infected with the parent virus, while similar T-cell responses were induced against another predominant epitope (VP2(74-86)). Further analyses indicated that a change of lysine to arginine at position 244 of VP1, which is the only amino acid difference in the P1 region, is responsible for such differential T-cell recognition. Thus, the difference in the T-cell reactivity to this VP1 region as well as the low level of viral persistence in the CNS may account for the low pathogenicity of this spontaneous variant virus.


Subject(s)
Antigens, Viral/genetics , T-Lymphocytes/immunology , Theilovirus/genetics , Amino Acid Substitution , Animals , Antigen Presentation , Mice , Molecular Sequence Data , T-Lymphocytes/virology , Theilovirus/immunology , Theilovirus/pathogenicity , Virulence/genetics
10.
J Clin Invest ; 98(7): 1626-32, 1996 Oct 01.
Article in English | MEDLINE | ID: mdl-8833912

ABSTRACT

The finding that intracellular expression of the beta-amyloid protein (Abeta) under a neuron-specific promoter led progressively to degeneration and death of neurons in the brains of transgenic mice provides a unique opportunity to utilize this animal model to both understand the mechanism that underlies neuronal cell death and define the complexity of events which may ensue. We observed a correlation between Abeta accumulation in selective neurons and activation of p53, a protein that has been implicated in the induction of apoptosis. Histological and immunohistochemical evaluations of adjacent brain sections suggest that expression of p53 is accompanied by nuclear DNA fragmentation. In certain regions with marked neuronal cell death, extracellular deposition of A(beta) became evident, together with the local activation of astrocytes. Interestingly, the neuritic structures underlying the Abeta deposits showed altered synaptophysin immunoreactivity and morphologic evidence for damage. This transgenic mouse model suggests that intracellular generation of the Abeta protein not only leads to the death of the neuron but may also functionally impair neighboring neurons as well. It further offers a mechanism whereby neuritic plaques may be derived.


Subject(s)
Amyloid beta-Peptides/metabolism , Apoptosis , Brain/metabolism , Neurons/metabolism , Tumor Suppressor Protein p53/metabolism , Alzheimer Disease/etiology , Amyloid beta-Peptides/genetics , Animals , Brain/pathology , DNA Fragmentation , Disease Models, Animal , Mice , Mice, Transgenic , Nerve Degeneration , Synaptophysin/immunology , Tumor Suppressor Protein p53/genetics
11.
Biotechnol Bioeng ; 38(9): 986-94, 1991 Nov.
Article in English | MEDLINE | ID: mdl-18600861

ABSTRACT

We report the partition coefficient, K(p') at the isoelectric point of lysozyme, chymotrypsinogen A, albumin, transferrin, and catalase in 64 different polyethylene(PEG)/ dextran(Dx)/water systems. We study the trends of the partition coefficient with protein type, polymer concentration, and polymer molecular weight. We find that the partition coefficient decreases with increasing tie line length for lysozyme, albumin, transferrin, and catalase for which K(p) is less than 1, but increases for chymotrysinogen for which K(p) is larger than 1. The effect of the tie line length on the partition coefficient is larger for the large proteins than for the small proteins. The partition coefficient decreases with increasing protein molecular weight except for lysozyme suggesting that lysozyme is present as a dimer or a trimer. The partition coefficient decreases with increasing PEG molecular weight, but the magnitude of the increase is larger for the smaller PEG molecular eights and tends to level of at high PEG molecular weight. The partition coefficient increases with increasing dextran (Dx) molecular weight for chymotrypsinogen but decreases for catalase. The partition coefficients of lysozyme, albumin, and transferrin increase with increasing Dx molecular weight from Dx 10(4) to Dx 1.1 x 10(5) and then slightly decrease from Dx 1.1 x 10(5) to Dx 5 x 10(5). The experimental results are analyzed using a statistical thermodynamics model. The experimental results are analyzed using a statistical thermodynamics model. The experiments suggest that protein partitioning at the isoelectric point in aqueous two-phase systems is strongly related to the size of the proteins and polymers. Finally, the impossibility of obtaining data completely independent of polymer concentration is emphasized.

12.
J Biotechnol ; 20(2): 151-61, 1991 Sep.
Article in English | MEDLINE | ID: mdl-1370050

ABSTRACT

The partitioning of proteins and other biomaterials between two aqueous phases containing polyethyleneglycol and dextran is a strong function of the molecular weight of the two polymers. Although both polymers are polydispersed (especially Dx) most theoretical treatments refer only to the average molecular weight (number or mass) and assume that the molecular weight distribution of each polymer is the same in both phases. In this work the molecular weight distribution of each polymer is the same in both phases. In this work the molecular weight distributions of four stock solutions of PEG (4000, 6000, 10,000 and 20,000) and four stock solutions of Dx (10,000, 40,000, 110,000 and 500,000) were measured using High Performance Gel Chromatography. The measurements were repeated on the phases formed by the polymer solutions after they were mixed and allowed to equilibrate. The molecular weight distribution of the Dx differed in the top and bottom phase; both differed from that of the stock solution. Although we believe that the molecular weight distribution for PEG also differs in the top and bottom phases, we were unable to determine this within the resolution of our instruments.


Subject(s)
Dextrans/chemistry , Polyethylene Glycols/chemistry , Molecular Weight , Solubility
13.
Bioseparation ; 2(2): 115-28, 1991.
Article in English | MEDLINE | ID: mdl-1368076

ABSTRACT

We report the partition coefficients of lysozyme, chymotrypsinogen-A, albumin and catalase in sixty four Polyethyleneglycol/Dextran/Water systems at 4, 25 and 40 degrees C. We found that the partition coefficients of the four proteins generally increase with increasing temperature. The influence of temperature on the partition coefficient seems to be highly dependent on the kind of protein which is partitioned and on the total polymer concentration, but does not, in general, depend on the molecular weight of the polymers. The partition coefficients of small and hydrophilic proteins like lysozyme and chymotrypsinogen-A are only slightly affected by changes in temperature, while the partition coefficients of bigger and more hydrophobic proteins like albumin and catalase are strongly affected by changes in temperature. The results suggest the incorporation of attractive forces (possible electrostatic) into a model previously reported by us.


Subject(s)
Proteins/isolation & purification , Albumins/isolation & purification , Catalase/isolation & purification , Chymotrypsinogen/isolation & purification , Muramidase/isolation & purification , Solubility , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL