Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Publication year range
1.
J Proteomics ; 307: 105267, 2024 09 15.
Article in English | MEDLINE | ID: mdl-39089615

ABSTRACT

Byssus is a unique external structure in sessile bivalves and is critical for settlement and metamorphosis. However, little is known about the stout byssus in Pteria penguin. We explored the byssus structure and proteins using scanning electron microscopy and proteomics, respectively. The results revealed that P. penguin byssus has a dense and highly aligned fiber inner core, and the outer cuticle contains protein granules embedded in the protein matrix. Proteomic analysis revealed 31 proteins in the byssus, among which 15 differentially expressed proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins were enriched in the EF-hand, immunoglobulin, and fibronectin domains. All these domains can participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which, together with the seven types of ECM proteins detected in the byssus, supports the hypothesis that the byssus is derived from the ECM. We also found that in vitro acellular structures of the byssus and the shell shared commonalities in their formation processes. These results are useful for further understanding byssus evolution and the characterization of byssus-related proteins. SIGNIFICANCE: This manuscript investigates the structure and the origin of Pteria penguin byssus, given that byssus is vital to provide critical protection for reproduction and even against environmental stresses that affect survival. However, there is rare research on byssus protein composition. Hence, though scanning electron microscopy and proteomic analysis, we discovered that P. penguin byssus possesses the dense and highly aligned fiber inner core, and the outer cuticle has protein granules embedded in the protein matrix. Proteomic analysis showed that there were 31 proteins in the byssus, among which 15 proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins closely related to byssus formation were enriched in EF hand, immunoglobulin, and fibronectin domains. These domains are able to participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which together with the seven types of ECM proteins detected in byssus support the hypothesis that byssus derive from the ECM. We also found in vitro acellular structures the byssus and the shell share commonalities in their formation processes. These results were useful for further understanding the byssus evolution and the characterization of the byssus-related proteins.


Subject(s)
Proteomics , Spheniscidae , Animals , Spheniscidae/metabolism , Proteomics/methods , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Extracellular Matrix Proteins/metabolism , Proteome/metabolism , Proteome/analysis , Bivalvia/metabolism , Animal Shells/metabolism , Animal Shells/ultrastructure , Animal Shells/chemistry , Biological Evolution
2.
Gene ; 927: 148747, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38972557

ABSTRACT

The gold inner shell of Turbo argyrostomus is an important morphological classification characteristic in Gastropoda. However, the gene sets responsible for shell formation in gastropods remain poorly explored. In this study, we investigated the microstructure using scanning electron microscopy (SEM), hematoxylin-eosin (HE) and Alcian blue staining-periodic acid-Schiff (AB-PAS) staining. The SEM results illustrated that the T. argyrostomus shell exhibited a special "sandwich" microstructure. The results of histological observation demonstrated two major cell types: adipocytes and mucin cells. A total of 318 differentially expressed genes were identified between edge mantle and central mantle, among which whey acidic protein, N66, and nacre-like proteins, and Lam G and EGF domains may be related to shell microstructure. 22.39% - 25.20% of the mucin genes had biomineralization related domains, which supported for the relationship between mucins and shell formation. Moreover, this study revealed energy distribution differences between the edge mantle and central mantle. These results provide insights for further understanding of the biomineralization mechanism in Gastropoda.


Subject(s)
Animal Shells , Gastropoda , Gene Expression Profiling , Transcriptome , Animals , Animal Shells/ultrastructure , Animal Shells/metabolism , Gastropoda/genetics , Gastropoda/metabolism , Gastropoda/ultrastructure , Gene Expression Profiling/methods , Mucins/genetics , Mucins/metabolism , Biomineralization/genetics , Microscopy, Electron, Scanning
3.
Sci Total Environ ; 905: 166894, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37704154

ABSTRACT

Byssus is important for marine bivalves to adhere robustly to diverse substrates and resist environmental impacts. The winged pearl oyster, Pteria penguin, can reattach or not reattach to the same environment, which leaves the development and survival of the oyster population at risk. In this study, diverse methods were employed to evaluate the byssus quality and explore the mechanism of byssus secretion at different temperatures. The results demonstrated that oysters maintained their byssus properties at different temperatures through polyphenol oxidase (PPO) and reactive oxygen species (ROS) variation. They were both higher at 27 °C than at 21 °C. Furthermore, PPO activities of WB27 (31.78 U/g ± 1.50 U/g) were significantly higher than NB27, WB21, and NB21. Sectional observation revealed three types of vesicles, from which a novel vesicle might participate in byssogenesis as a putative metal storage particle. Moreover, cytoskeletal proteins may cooperate with cilia to transport byssal proteins, which then facilitate byssus formation under the regulation of upstream signals. Transcriptome analysis demonstrated that protein quality control, ubiquitin-mediated proteolysis, and cytoskeletal reorganization-related genes contributed to adaptation to temperature changes and byssus fabrication, and protection-related genes play a critical role in byssogenesis, byssus toughness, and durability. These results were utilized to create a byssogenesis mechanism model, to reveal the foot gland and vesicle types of P. penguin and provide new insights into adaptation to temperature changes and byssus fabrication in sessile bivalves.


Subject(s)
Bivalvia , Pinctada , Spheniscidae , Animals , Temperature , Gene Expression Profiling , Proteins
SELECTION OF CITATIONS
SEARCH DETAIL