Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
2.
Am J Physiol Renal Physiol ; 327(1): F61-F76, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38721661

ABSTRACT

The exocyst and Ift88 are necessary for primary ciliogenesis. Overexpression of Exoc5 (OE), a central exocyst component, resulted in longer cilia and enhanced injury recovery. Mitochondria are involved in acute kidney injury (AKI). To investigate cilia and mitochondria, basal respiration and mitochondrial maximal and spare respiratory capacity were measured in Exoc5 OE, Exoc5 knockdown (KD), Exoc5 ciliary targeting sequence mutant (CTS-mut), control Madin-Darby canine kidney (MDCK), Ift88 knockout (KO), and Ift88 rescue cells. In Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells, these parameters were decreased. In Exoc5 OE and Ift88 rescue cells they were increased. Reactive oxygen species were higher in Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells compared with Exoc5 OE, control, and Ift88 rescue cells. By electron microscopy, mitochondria appeared abnormal in Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells. A metabolomics screen of control, Exoc5 KD, Exoc5 CTS-mut, Exoc5 OE, Ift88 KO, and Ift88 rescue cells showed a marked increase in tryptophan levels in Exoc5 CTS-mut (113-fold) and Exoc5 KD (58-fold) compared with control cells. A 21% increase was seen in Ift88 KO compared with rescue cells. In Exoc5 OE compared with control cells, tryptophan was decreased 59%. To determine the effects of ciliary loss on AKI, we generated proximal tubule-specific Exoc5 and Ift88 KO mice. These mice had loss of primary cilia, decreased mitochondrial ATP synthase, and increased tryptophan in proximal tubules with greater injury following ischemia-reperfusion. These data indicate that cilia-deficient renal tubule cells are primed for injury with mitochondrial defects in tryptophan metabolism.NEW & NOTEWORTHY Mitochondria are centrally involved in acute kidney injury (AKI). Here, we show that cilia-deficient renal tubule cells both in vitro in cell culture and in vivo in mice are primed for injury with mitochondrial defects and aberrant tryptophan metabolism. These data suggest therapeutic strategies such as enhancing ciliogenesis or improving mitochondrial function to protect patients at risk for AKI.


Subject(s)
Acute Kidney Injury , Cilia , Mitochondria , Tryptophan , Animals , Cilia/metabolism , Cilia/pathology , Mitochondria/metabolism , Mitochondria/pathology , Dogs , Tryptophan/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Madin Darby Canine Kidney Cells , Reactive Oxygen Species/metabolism , Kidney Tubules/metabolism , Kidney Tubules/pathology , Mice , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/deficiency , Mice, Knockout
3.
bioRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38260421

ABSTRACT

The conserved mesencephalic astrocyte-derived neurotrophic factor (MANF) protects dopaminergic neurons but also functions in several other tissues. Previously, we showed that Caenorhabditis elegans manf-1 null mutants have increased ER stress, dopaminergic neurodegeneration, protein aggregation, slower growth, and a reduced lifespan. The multiple requirements of MANF in different systems suggest its essential role in regulating cellular processes. However, how intracellular and extracellular MANF regulates broader cellular function remains unknown. Here, we report a novel mechanism of action for manf-1 that involves the autophagy transcription factor HLH-30/TFEB-mediated signaling to regulate lysosomal function and aging. We generated multiple transgenic strains overexpressing MANF-1 and found that animals had extended lifespan, reduced protein aggregation, and improved neuronal health. Using a fluorescently tagged MANF-1, we observed different tissue localization of MANF-1 depending on the ER retention signal. Further subcellular analysis showed that MANF-1 localizes within cells to the lysosomes. These findings were consistent with our transcriptomic studies and, together with analysis of autophagy regulators, demonstrate that MANF-1 regulates protein homeostasis through increased autophagy and lysosomal activity. Collectively, our findings establish MANF as a critical regulator of the stress response, proteostasis, and aging.

4.
BMC Biol ; 21(1): 252, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37950228

ABSTRACT

BACKGROUND: Diets high in saturated fat and sugar, termed "Western diets," have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson's disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high-sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high-sugar diets and dopaminergic neurodegeneration. RESULTS: Adult high-glucose and high-fructose diets, or exposure from day 1 to 5 of adulthood, led to increased lipid content, shorter lifespan, and decreased reproduction. However, in contrast to previous reports, we found that adult chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high-sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting downregulation of the dopamine reuptake transporter dat-1 that could result in decreased 6-OHDA uptake. CONCLUSIONS: Our work uncovers a neuroprotective role for high-sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.


Subject(s)
Caenorhabditis elegans , Neurodegenerative Diseases , Animals , Humans , Caenorhabditis elegans/metabolism , Oxidopamine/adverse effects , Oxidopamine/metabolism , Dopamine/metabolism , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/metabolism , Nerve Degeneration/chemically induced , Nerve Degeneration/metabolism , Nerve Degeneration/prevention & control , Dopaminergic Neurons/physiology , Adenosine Triphosphate/metabolism , Sugars/adverse effects , Sugars/metabolism , Fructose/adverse effects , Fructose/metabolism , Glucose/metabolism , Disease Models, Animal
5.
Sci Rep ; 13(1): 18125, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872247

ABSTRACT

Polyploid cells contain more than two copies of each chromosome. Polyploidy has important roles in development, evolution, and tissue regeneration/repair, and can arise as a programmed polyploidization event or be triggered by stress. Cancer cells are often polyploid. C. elegans nematodes are typically diploid, but stressors such as heat shock and starvation can trigger the production of tetraploid offspring. In this study, we utilized a recently published protocol to generate stable tetraploid strains of C. elegans and compared their physiological traits and sensitivity to two DNA-damaging chemotherapeutic drugs, cisplatin and doxorubicin. As prior studies have shown, tetraploid worms are approximately 30% longer, shorter-lived, and have a smaller brood size than diploids. We investigated the reproductive defect further, determining that tetraploid worms have a shorter overall germline length, a higher rate of germ cell apoptosis, more aneuploidy in oocytes and offspring, and larger oocytes and embryos. We also found that tetraploid worms are modestly protected from growth delay from the chemotherapeutics but are similarly or more sensitive to reproductive toxicity. Transcriptomic analysis revealed differentially expressed pathways that may contribute to sensitivity to stress. This study reveals phenotypic consequences of whole-animal tetraploidy that make C. elegans an excellent model for ploidy differences.


Subject(s)
Caenorhabditis elegans , Tetraploidy , Animals , Caenorhabditis elegans/genetics , Ploidies , Polyploidy , Diploidy
6.
bioRxiv ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37398434

ABSTRACT

BACKGROUND: Diets high in saturated fat and sugar, termed western diets, have been associated with several negative health outcomes, including increased risk for neurodegenerative disease. Parkinson s Disease (PD) is the second most prevalent neurodegenerative disease and is characterized by the progressive death of dopaminergic neurons in the brain. We build upon previous work characterizing the impact of high sugar diets in Caenorhabditis elegans to mechanistically evaluate the relationship between high sugar diets and dopaminergic neurodegeneration. RESULTS: Non-developmental high glucose and fructose diets led to increased lipid content and shorter lifespan and decreased reproduction. However, in contrast to previous reports, we found that non-developmental chronic high-glucose and high-fructose diets did not induce dopaminergic neurodegeneration alone and were protective from 6-hydroxydopamine (6-OHDA) induced degeneration. Neither sugar altered baseline electron transport chain function, and both increased vulnerability to organism-wide ATP depletion when the electron transport chain was inhibited, arguing against energetic rescue as a basis for neuroprotection. The induction of oxidative stress by 6-OHDA is hypothesized to contribute to its pathology, and high sugar diets prevented this increase in the soma of the dopaminergic neurons. However, we did not find increased expression of antioxidant enzymes or glutathione levels. Instead, we found evidence suggesting alterations to dopamine transmission that could result in decreased 6-OHDA uptake. CONCLUSION: Our work uncovers a neuroprotective role for high sugar diets, despite concomitant decreases in lifespan and reproduction. Our results support the broader finding that ATP depletion alone is insufficient to induce dopaminergic neurodegeneration, whereas increased neuronal oxidative stress may drive degeneration. Finally, our work highlights the importance of evaluating lifestyle by toxicant interactions.

7.
PLoS One ; 18(7): e0281797, 2023.
Article in English | MEDLINE | ID: mdl-37418455

ABSTRACT

Caenorhabditis elegans (C. elegans) has served as a simple model organism to study dopaminergic neurodegeneration, as it enables quantitative analysis of cellular and sub-cellular morphologies in live animals. These isogenic nematodes have a rapid life cycle and transparent body, making high-throughput imaging and evaluation of fluorescently tagged neurons possible. However, the current state-of-the-art method for quantifying dopaminergic degeneration requires researchers to manually examine images and score dendrites into groups of varying levels of neurodegeneration severity, which is time consuming, subject to bias, and limited in data sensitivity. We aim to overcome the pitfalls of manual neuron scoring by developing an automated, unbiased image processing algorithm to quantify dopaminergic neurodegeneration in C. elegans. The algorithm can be used on images acquired with different microscopy setups and only requires two inputs: a maximum projection image of the four cephalic neurons in the C. elegans head and the pixel size of the user's camera. We validate the platform by detecting and quantifying neurodegeneration in nematodes exposed to rotenone, cold shock, and 6-hydroxydopamine using 63x epifluorescence, 63x confocal, and 40x epifluorescence microscopy, respectively. Analysis of tubby mutant worms with altered fat storage showed that, contrary to our hypothesis, increased adiposity did not sensitize to stressor-induced neurodegeneration. We further verify the accuracy of the algorithm by comparing code-generated, categorical degeneration results with manually scored dendrites of the same experiments. The platform, which detects 20 different metrics of neurodegeneration, can provide comparative insight into how each exposure affects dopaminergic neurodegeneration patterns.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/physiology , Animals, Genetically Modified , Dopamine , Oxidopamine , Dopaminergic Neurons/physiology
8.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333126

ABSTRACT

Polyploid cells contain more than two copies of each chromosome. Polyploidy has important roles in development, evolution, and tissue regeneration/repair, and can arise as a programmed polyploidization event or be triggered by stress. Cancer cells are often polyploid. C. elegans nematodes are typically diploid, but stressors such as heat shock and starvation can trigger the production of tetraploid offspring. In this study, we utilized a recently published protocol to generate stable tetraploid strains of C. elegans and compared their physiological traits and sensitivity to two DNA-damaging chemotherapeutic drugs, cisplatin and doxorubicin. As prior studies have shown, tetraploid worms are approximately 30% longer, shorter-lived, and have a smaller brood size than diploids. We investigated the reproductive defect further, determining that tetraploid worms have a shorter overall germline length, a higher rate of germ cell apoptosis, more aneuploidy in oocytes and offspring, and larger oocytes and embryos. We also found that tetraploid worms are modestly protected from growth delay from the chemotherapeutics but are similarly or more sensitive to reproductive toxicity. Transcriptomic analysis revealed differentially expressed pathways that may contribute to sensitivity to stress. Overall, this study reveals the phenotypic consequences of whole-animal tetraploidy in C. elegans.

9.
bioRxiv ; 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36778421

ABSTRACT

Caenorhabditis elegans ( C. elegans ) has served as a simple model organism to study dopaminergic neurodegeneration, as it enables quantitative analysis of cellular and sub-cellular morphologies in live animals. These isogenic nematodes have a rapid life cycle and transparent body, making high-throughput imaging and evaluation of fluorescently tagged neurons possible. However, the current state-of-the-art method for quantifying dopaminergic degeneration requires researchers to manually examine images and score dendrites into groups of varying levels of neurodegeneration severity, which is time consuming, subject to bias, and limited in data sensitivity. We aim to overcome the pitfalls of manual neuron scoring by developing an automated, unbiased image processing algorithm to quantify dopaminergic neurodegeneration in C. elegans . The algorithm can be used on images acquired with different microscopy setups and only requires two inputs: a maximum projection image of the four cephalic neurons in the C. elegans head and the pixel size of the user’s camera. We validate the platform by detecting and quantifying neurodegeneration in nematodes exposed to rotenone, cold shock, and 6-hydroxydopamine using 63x epifluorescence, 63x confocal, and 40x epifluorescence microscopy, respectively. Analysis of tubby mutant worms with altered fat storage showed that, contrary to our hypothesis, increased adiposity did not sensitize to stressor-induced neurodegeneration. We further verify the accuracy of the algorithm by comparing code-generated, categorical degeneration results with manually scored dendrites of the same experiments. The platform, which detects 19 different metrics of neurodegeneration, can provide comparative insight into how each exposure affects dopaminergic neurodegeneration patterns.

10.
Int J Toxicol ; 42(1): 19-36, 2023.
Article in English | MEDLINE | ID: mdl-36523256

ABSTRACT

Liver responses are the most common endpoints used as the basis for setting exposure standards. Liver hepatocytes play a vital role in biotransformation of xenobiotics, but non-parenchymal cells (NPCs) in the liver are also involved in certain liver responses. Development of in vitro systems that more faithfully capture liver responses to reduce reliance on animals is a major focus of New Approach Methodology (NAMs). Since rodent regulatory studies are frequently the sole source safety assessment data, mode-of-action data, and used for risk assessments, in vitro rodent models that reflect in vivo responses need to be developed to reduce reliance on animal models. In the work presented in this paper, we developed a 2-D hepatocyte monoculture and 2-D liver cell co-culture system using rat liver cells. These models were assessed for conditions for short-term stability of the cultures and phenotypic and transcriptomic responses of 2 prototypic hepatotoxicants compounds - acetaminophen and phenobarbital. The optimized multi-cellular 2-D culture required use of freshly prepared hepatocytes and NPCs from a single rat, a 3:1 ratio of hepatocytes to NPCs and growth medium using 50% Complete Williams E medium (WEM) and 50% Endothelial Cell Medium (ECM). The transcriptomic responses of the 2 model systems to PB were compared to previous studies from TG-Gates on the gene expression changes in intact rats and the co-culture model responses were more representative of the in vivo responses. Transcriptomic read-outs promise to move beyond conventional phenotypic evaluations with these in vitro NAMs and provide insights about modes of action.


Subject(s)
Hepatocytes , Liver , Rats , Animals , Coculture Techniques , Hepatocytes/metabolism , Liver/metabolism , Acetaminophen/toxicity , Models, Biological , Cells, Cultured
11.
Curr Res Toxicol ; 3: 100084, 2022.
Article in English | MEDLINE | ID: mdl-35957653

ABSTRACT

Aims: Mitochondrial dysfunction is implicated in several diseases, including neurological disorders such as Parkinson's disease. However, there is uncertainty about which of the many mechanisms by which mitochondrial function can be disrupted may lead to neurodegeneration. Pentachlorophenol (PCP) is an organic pollutant reported to cause mitochondrial dysfunction including oxidative stress and mitochondrial uncoupling. We investigated the effects of PCP exposure in Caenorhabditis elegans, including effects on mitochondria and dopaminergic neurons. We hypothesized that mild mitochondrial uncoupling by PCP would impair bioenergetics while decreasing oxidative stress, and therefore would not cause dopaminergic neurodegeneration. Results: A 48-hour developmental exposure to PCP causing mild growth delay (∼10 % decrease in growth during 48 h, covering all larval stages) reduced whole-organism ATP content > 50 %, and spare respiratory capacity âˆ¼ 30 %. Proton leak was also markedly increased. These findings suggest a main toxic mechanism of mitochondrial uncoupling rather than oxidative stress, which was further supported by a concomitant shift toward a more reduced cellular redox state measured at the whole organism level. However, exposure to PCP did not cause dopaminergic neurodegeneration, nor did it sensitize animals to a neurotoxic challenge with 6-hydroxydopamine. Whole-organism uptake and PCP metabolism measurements revealed low overall uptake of PCP in our experimental conditions (50 µM PCP in the liquid exposure medium resulted in organismal concentrations of < 0.25 µM), and no measurable production of the oxidative metabolites tetra-1,4-benzoquinone and tetrachloro-p-hydroquinone. Innovation: This study provides new insights into the mechanistic interplay between mitochondrial uncoupling, oxidative stress, and neurodegeneration in C. elegans. These findings support the premise of mild uncoupling-mediated neuroprotection, but are inconsistent with proposed broad "mitochondrial dysfunction"-mediated neurodegeneration models, and highlight the utility of the C. elegans model for studying mitochondrial and neurotoxicity. Conclusions: Developmental exposure to pentachlorophenol causes gross toxicological effects (growth delay and arrest) at high levels. At a lower level of exposure, still causing mild growth delay, we observed mitochondrial dysfunction including uncoupling and decreased ATP levels. However, this was associated with a more-reduced cellular redox tone and did not exacerbate dopaminergic neurotoxicity of 6-hydroxydopamine, instead trending toward protection. These findings may be informative of efforts to define nuanced mitochondrial dysfunction-related adverse outcome pathways that will differ depending on the form of initial mitochondrial toxicity.

12.
Addict Behav ; 134: 107418, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35816904

ABSTRACT

BACKGROUND: Military veterans are a high-risk group for health risk behaviors, including alcohol and cannabis use. However, research on veteran vs. non-veteran rates of alcohol/cannabis use are inconsistent across studies. Further, no research has investigated veteran vs. non-veteran rates of alcohol and cannabis co-use, and few studies have tested whether demographic variables, particularly race/ethnicity, moderate group differences. Therefore, the current study tested whether 1) veteran vs. non-veterans differed in rates of alcohol use, cannabis use, and alcohol and cannabis co-use, and 2) whether demographic covariates (age, sex, race/ethnicity) moderated associations. METHODS: Data on adults (N = 706,897; 53.4% female) were derived from the 2002-2019 National Study on Drug Use and Health. Participant demographics, alcohol use frequency, drinking quantity, and cannabis use frequency were self-reported. RESULTS: Non-veterans reported higher drinking quantity, cannabis frequency, and co-use. However, being a veteran was a risk factor for heavier drinking for women, ethnic/racial minoritized participants, and adults under the age of 50. Additionally, veteran status was a risk factor for cannabis use frequency in racial/ethnic minoritized participants and women. Similarly, being a veteran was a risk factor for alcohol and cannabis co-use for racial/ethnic minoritized participants, and the buffering effect of being a Veteran on co-use was reduced for older participants and women. CONCLUSIONS: Results suggest that, at the population level, non-veterans may be heavier alcohol/cannabis users. However, moderating analyses suggested that being a veteran is a risk factor for women, racial/ethnic minoritized individuals, and younger individuals. Findings are discussed in terms of public health implications.

13.
Cells ; 11(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-35053404

ABSTRACT

Cytochrome P450 2E1 (CYP2E1) is pivotal in hepatotoxicity induced by alcohol abuse and different xenobiotics. In this setting, CYP2E1 generates reactive metabolites inducing oxidative stress, mitochondrial dysfunction and cell death. In addition, this enzyme appears to play a role in the progression of obesity-related fatty liver to nonalcoholic steatohepatitis. Indeed, increased CYP2E1 activity in nonalcoholic fatty liver disease (NAFLD) is deemed to induce reactive oxygen species overproduction, which in turn triggers oxidative stress, necroinflammation and fibrosis. In 1997, Avadhani's group reported for the first time the presence of CYP2E1 in rat liver mitochondria, and subsequent investigations by other groups confirmed that mitochondrial CYP2E1 (mtCYP2E1) could be found in different experimental models. In this review, we first recall the main features of CYP2E1 including its role in the biotransformation of endogenous and exogenous molecules, the regulation of its expression and activity and its involvement in different liver diseases. Then, we present the current knowledge on the physiological role of mtCYP2E1, its contribution to xenobiotic biotransformation as well as the mechanism and regulation of CYP2E1 targeting to mitochondria. Finally, we discuss experimental investigations suggesting that mtCYP2E1 could have a role in alcohol-associated liver disease, xenobiotic-induced hepatotoxicity and NAFLD.


Subject(s)
Cytochrome P-450 CYP2E1/metabolism , Liver Diseases/enzymology , Liver/enzymology , Liver/pathology , Mitochondria/enzymology , Animals , Biotransformation , Xenobiotics
14.
Toxicol In Vitro ; 80: 105311, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35038564

ABSTRACT

There is increasing interest in using modern 'omics technologies, such as whole transcriptome sequencing, to inform decisions about human health safety and chemical toxicity hazard. High throughput methodologies using in vitro assays offer a path forward in reducing or eliminating animal testing. However, many aspects of these technologies need assessment before they will gain the trust of regulators and the public as viable alternative test methods for human health and safety. We used a high throughput whole transcriptome sequence assay (TempO-Seq) to assess the use of three widely used cancer cell lines (HepG2, MCF7, and Ishikawa cells) as in vitro systems for determination of cellular modes of action for two well studied compounds with canonical liver responses: ketoconazole and phenobarbital. We evaluated transcriptomic data to infer points of departure for use in risk analyses of compounds. Both compounds displayed shortcomings in evidence for canonical liver-related responses in any cell line, despite a strong dose response in all three. This raises questions about the competence of simple, mono-cultured cancer cell lines as appropriate surrogates for some adverse effects or toxic endpoints. Points of departure derived from benchmark doses were highly consistent across all three cell lines however, indicating the use of transcriptomic BMD analyses for such purposes would be a reliable and consistent approach.


Subject(s)
Risk Assessment/methods , Toxicogenetics , Cell Line, Tumor , Gene Expression/drug effects , High-Throughput Nucleotide Sequencing , Humans , Ketoconazole/pharmacology , Phenobarbital/pharmacology , RNA-Seq
15.
Aging Cell ; 21(2): e13530, 2022 02.
Article in English | MEDLINE | ID: mdl-34984806

ABSTRACT

Older age is a major risk factor for damage to many tissues, including liver. Aging undermines resiliency and impairs liver regeneration. The mechanisms whereby aging reduces resiliency are poorly understood. Hedgehog is a signaling pathway with critical mitogenic and morphogenic functions during development. Recent studies indicate that Hedgehog regulates metabolic homeostasis in adult liver. The present study evaluates the hypothesis that Hedgehog signaling becomes dysregulated in hepatocytes during aging, resulting in decreased resiliency and therefore, impaired regeneration and enhanced vulnerability to damage. Partial hepatectomy (PH) was performed on young and old wild-type mice and Smoothened (Smo)-floxed mice treated with viral vectors to conditionally delete Smo and disrupt Hedgehog signaling specifically in hepatocytes. Changes in signaling were correlated with changes in regenerative responses and compared among groups. Old livers had fewer hepatocytes proliferating after PH. RNA sequencing identified Hedgehog as a top downregulated pathway in old hepatocytes before and after the regenerative challenge. Deleting Smo in young hepatocytes before PH prevented Hedgehog pathway activation after PH and inhibited regeneration. Gene Ontogeny analysis demonstrated that both old and Smo-deleted young hepatocytes had activation of pathways involved in innate immune responses and suppression of several signaling pathways that control liver growth and metabolism. Hedgehog inhibition promoted telomere shortening and mitochondrial dysfunction in hepatocytes, consequences of aging that promote inflammation and impair tissue growth and metabolic homeostasis. Hedgehog signaling is dysregulated in old hepatocytes. This accelerates aging, resulting in decreased resiliency and therefore, impaired liver regeneration and enhanced vulnerability to damage.


Subject(s)
Hedgehog Proteins , Signal Transduction , Aging , Animals , Cell Proliferation , Hedgehog Proteins/metabolism , Hepatocytes/metabolism , Liver/metabolism , Liver Regeneration/physiology , Mice
16.
SLAS Discov ; 27(3): 201-208, 2022 04.
Article in English | MEDLINE | ID: mdl-35058186

ABSTRACT

Three-dimensional (3D) culture systems have been developed that can re-capitulate organ level responses, simulate compound diffusion through complex structures, and assess cellular heterogeneity of tissues, making them attractive models for advanced in vitro research and discovery. Organoids are a unique subtype of 3D cell culture that are grown from stem cells, are self-organizing, and closely replicate in vivo pathophysiology. Organoids have been used to understand tissue development, model diseases, test drug sensitivity and toxicity, and advance regenerative medicine. However, traditional organoid culture methods are inadequate because they are low throughput and ill-suited for single organoid imaging, phenotypic assessment, and isolation from heterogenous organoid populations. To address these bottlenecks, we have adapted our tissue culture consumable and instrumentation to enable automated imaging, identification, and isolation of individual organoids. Organoids grown on the 3D CytoSortⓇ Array can be reliably tracked, imaged, and phenotypically analyzed using brightfield and fluorescent microscopy as they grow over time, then released and transferred fully intact for use in downstream applications. Using mouse hepatic and pancreatic organoids, we have demonstrated the use of this technology for single-organoid imaging, clonal organoid generation, parent organoid subcloning, and single-organoid RNA extraction for downstream gene expression or transcriptomic analysis. The results validate the ability of the CellRaft AIRⓇ System to facilitate efficient, user-friendly, and automated workflows broadly applicable to organoid research by overcoming several pain points: 1) single organoid time-course imaging and phenotypic assessment, 2) establishment of single cell-derived organoids, and 3) isolation and retrieval of single organoids for downstream applications.


Subject(s)
Organoids , Animals , Cells, Cultured , Mice , Organoids/metabolism
17.
Methods Mol Biol ; 2310: 91-111, 2021.
Article in English | MEDLINE | ID: mdl-34096001

ABSTRACT

Mitochondrial DNA (mtDNA) copy number is a critical component of overall mitochondrial health. In this chapter, we describe methods for simultaneous isolation of mtDNA and nuclear DNA (nucDNA), and measurement of their respective copy numbers using quantitative PCR. Methods differ depending on the species and cell type of the starting material, and availability of specific PCR reagents. We also briefly describe factors that affect mtDNA copy number and discuss caveats to its use as a biomarker.


Subject(s)
Cell Nucleus/genetics , DNA Copy Number Variations , DNA, Mitochondrial/genetics , Gene Dosage , Mitochondria/genetics , Real-Time Polymerase Chain Reaction , Animals , Caenorhabditis elegans/genetics , DNA, Fungal/genetics , Drosophila melanogaster/genetics , Fundulidae/genetics , Humans , Mice , Oryzias/genetics , Rats , Saccharomyces cerevisiae/genetics , Zebrafish/genetics
18.
Drug Metab Rev ; 53(2): 207-233, 2021 05.
Article in English | MEDLINE | ID: mdl-33989099

ABSTRACT

Improved pharmacokinetics/pharmacodynamics (PK/PD) prediction in the early stages of drug development is essential to inform lead optimization strategies and reduce attrition rates. Recently, there have been significant advancements in the development of new in vitro and in vivo strategies to better characterize pharmacokinetic properties and efficacy of drug leads. Herein, we review advances in experimental and mathematical models for clearance predictions, advancements in developing novel tools to capture slowly metabolized drugs, in vivo model developments to capture human etiology for supporting drug development, limitations and gaps in these efforts, and a perspective on the future in the field.

19.
J Toxicol Environ Health B Crit Rev ; 24(2): 51-94, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33616007

ABSTRACT

Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.


Subject(s)
Caenorhabditis elegans/metabolism , Pharmaceutical Preparations/metabolism , Xenobiotics/metabolism , Animals , Biological Transport/physiology , Ecotoxicology/methods , Humans , Models, Animal , Species Specificity , Toxicology/methods
20.
Nucleic Acids Res ; 49(4): 2065-2084, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33555350

ABSTRACT

We previously reported that human Rev1 (hRev1) bound to a parallel-stranded G-quadruplex (G4) from the c-MYC promoter with high affinity. We have extended those results to include other G4 motifs, finding that hRev1 exhibited stronger affinity for parallel-stranded G4 than either anti-parallel or hybrid folds. Amino acids in the αE helix of insert-2 were identified as being important for G4 binding. Mutating E466 and Y470 to alanine selectively perturbed G4 binding affinity. The E466K mutant restored wild-type G4 binding properties. Using a forward mutagenesis assay, we discovered that loss of hRev1 increased G4 mutation frequency >200-fold compared to the control sequence. Base substitutions and deletions occurred around and within the G4 motif. Pyridostatin (PDS) exacerbated this effect, as the mutation frequency increased >700-fold over control and deletions upstream of the G4 site more than doubled. Mutagenic replication of G4 DNA (±PDS) was partially rescued by wild-type and E466K hRev1. The E466A or Y470A mutants failed to suppress the PDS-induced increase in G4 mutation frequency. These findings have implications for the role of insert-2, a motif conserved in vertebrates but not yeast or plants, in Rev1-mediated suppression of mutagenesis during G4 replication.


Subject(s)
DNA Replication , DNA/chemistry , DNA/metabolism , G-Quadruplexes , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Cell Line , DNA-Directed DNA Polymerase/metabolism , Genes, myc , Humans , Models, Molecular , Mutation , Nucleotide Motifs , Nucleotidyltransferases/genetics , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL