Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 5(3): 244-52, 2011 Jun.
Article in English | MEDLINE | ID: mdl-23851475

ABSTRACT

This paper describes a single transistor floating-gate synapse device that can be used to store a weight in a nonvolatile manner, compute a biological EPSP, and demonstrate biological learning rules such as Long-Term Potentiation, LTD, and spike-time dependent plasticity. We also describe a highly scalable architecture of a matrix of synapses to implement the described learning rules. Parameters for weight update in the 0.35 um process have been extracted and can be used to predict the change in weight based on time difference between pre- and post-synaptic spike times.

2.
IEEE Trans Biomed Circuits Syst ; 4(5): 311-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-23853376

ABSTRACT

A neuromorphic analog chip is presented that is capable of implementing massively parallel neural computations while retaining the programmability of digital systems. We show measurements from neurons with Hopf bifurcations and integrate and fire neurons, excitatory and inhibitory synapses, passive dendrite cables, coupled spiking neurons, and central pattern generators implemented on the chip. This chip provides a platform for not only simulating detailed neuron dynamics but also uses the same to interface with actual cells in applications such as a dynamic clamp. There are 28 computational analog blocks (CAB), each consisting of ion channels with tunable parameters, synapses, winner-take-all elements, current sources, transconductance amplifiers, and capacitors. There are four other CABs which have programmable bias generators. The programmability is achieved using floating gate transistors with on-chip programming control. The switch matrix for interconnecting the components in CABs also consists of floating-gate transistors. Emphasis is placed on replicating the detailed dynamics of computational neural models. Massive computational area efficiency is obtained by using the reconfigurable interconnect as synaptic weights, resulting in more than 50 000 possible 9-b accurate synapses in 9 mm(2).

SELECTION OF CITATIONS
SEARCH DETAIL