Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Adv Exp Med Biol ; 871: 31-47, 2015.
Article in English | MEDLINE | ID: mdl-26374211

ABSTRACT

The National Institutes of Health (NIH) oversight of human gene transfer research, which is defined as the deliberate transfer of recombinant and/or synthetic nucleic acid molecules to humans, originates with the NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines). The NIH Guidelines, which were first published in the Federal Register almost 40 years ago, have been amended numerous times to remain responsive to scientific progress and to clearly define the responsibilities of NIH, the Recombinant DNA Advisory Committee (RAC), investigators, and institutions. Human gene transfer trials conducted at clinical sites in the United States (USA) are subject to the NIH Guidelines if they are conducted at, or sponsored by, an institution that receives any support for recombinant or synthetic nucleic acid research from the NIH. Human gene transfer trials conducted either in the USA or abroad are also subject to the NIH Guidelines if the investigational agent was developed with NIH funds and the institution that developed the investigational materials sponsors or participates in these projects. Trials are registered with the NIH Office Biotechnology Activities (OBA) and there are ongoing reporting requirements. Each new trial is reviewed by the RAC, and those that are novel or raise unique ethical or social issues are selected for review at quarterly public RAC meetings. The RAC also advises the NIH on policy and other matters relating to clinical gene transfer research and biosafety.


Subject(s)
DNA, Recombinant/therapeutic use , Drug and Narcotic Control/legislation & jurisprudence , Genetic Therapy/legislation & jurisprudence , Genetic Vectors/therapeutic use , Translational Research, Biomedical/legislation & jurisprudence , Animals , Clinical Trials as Topic , Genetic Therapy/ethics , Humans , Informed Consent/ethics , Informed Consent/legislation & jurisprudence , National Institutes of Health (U.S.) , Patient Safety/legislation & jurisprudence , Practice Guidelines as Topic , Research Design , Translational Research, Biomedical/ethics , United States
3.
Proc Natl Acad Sci U S A ; 110(27): E2510-7, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23776209

ABSTRACT

A cell-based phenotypic screen for inhibitors of biofilm formation in mycobacteria identified the small molecule TCA1, which has bactericidal activity against both drug-susceptible and -resistant Mycobacterium tuberculosis (Mtb) and sterilizes Mtb in vitro combined with rifampicin or isoniazid. In addition, TCA1 has bactericidal activity against nonreplicating Mtb in vitro and is efficacious in acute and chronic Mtb infection mouse models both alone and combined with rifampicin or isoniazid. Transcriptional analysis revealed that TCA1 down-regulates genes known to be involved in Mtb persistence. Genetic and affinity-based methods identified decaprenyl-phosphoryl-ß-D-ribofuranose oxidoreductase DprE1 and MoeW, enzymes involved in cell wall and molybdenum cofactor biosynthesis, respectively, as targets responsible for the activity of TCA1. These in vitro and in vivo results indicate that this compound functions by a unique mechanism and suggest that TCA1 may lead to the development of a class of antituberculosis agents.


Subject(s)
Antitubercular Agents/pharmacology , Benzothiazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Thiophenes/pharmacology , Tuberculosis, Pulmonary/drug therapy , Alcohol Oxidoreductases , Amino Acid Sequence , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Benzothiazoles/administration & dosage , Benzothiazoles/chemistry , Biofilms/drug effects , Biofilms/growth & development , Carbohydrate Epimerases/antagonists & inhibitors , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/genetics , Drug Resistance, Bacterial , Female , Genes, Bacterial , High-Throughput Screening Assays , Isoniazid/administration & dosage , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Molecular Sequence Data , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/chemistry , Oxidoreductases/genetics , Rifampin/administration & dosage , Thiophenes/administration & dosage , Thiophenes/chemistry , Tuberculosis, Pulmonary/microbiology
4.
Clin Immunol ; 111(1): 1-15, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15093546

ABSTRACT

The development of vaccines and implementation of vaccination programs are among the most important medical contributions to humanity. To date, vaccination has reduced morbidity and mortality from infectious diseases more than any other specific medical intervention. The intentional use of bioweapons against civilians (bioterrorism), recently highlighted by events around the world, has fueled interest in the development of vaccines for potential microbial agents of bioterror. This review discusses the microbial agents that are considered to pose the greatest risk to the public, the diseases associated with them, and the vaccines that are available for their prevention. The paucity of such vaccines and uncertainty regarding mechanisms of vaccine efficacy and the microbial antigens that elicit protection underscore the need for continued study of host-microbe interaction and the immune response to potential agents of bioterror for the development of new vaccines and immune-based therapies to combat their potential to harm the public.


Subject(s)
Biological Warfare , Bioterrorism/prevention & control , Communicable Disease Control , Vaccines/therapeutic use , Humans , Mass Vaccination , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL