Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 949
Filter
1.
Bioresour Technol ; : 131432, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236909

ABSTRACT

In this study, the effect of modulating fulvic acid (FA) concentrations (0, 25 and 50 mg/L) on nitrogen removal in a bioelectrochemical hydrogen autotrophic denitrification system (BHDS) was investigated. Results showed that FA increased the nitrate (NO3--N) removal rate of the BHDSs from 37.8 to 46.2 and 45.2 mg N/L·d with a current intensity of 40 mA. The metagenomic analysis revealed that R2 (25 mg/L) was predominantly populated by autotrophic denitrifying microorganisms, which enhanced denitrification performance by facilitating electron transfer. Conversely, R3 (50 mg/L) exhibited an increase in genes related to the heterotrophic process, which improved the denitrification performance through the collaborative action of both autotrophic and heterotrophic denitrification pathways. Besides, the study also identified a potential for nitrogen removal in Serpentinimonas, which have been rarely studied. The interesting set of findings provide valuable reference for optimizing BHDS for nitrogen removal and promoting specific denitrifying genera within the system.

2.
Sci Rep ; 14(1): 21255, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261576

ABSTRACT

Seamless integration of three-dimensional (3D) terrain models and hydraulic structure models is a technical challenge in the construction of 3D virtual scenes for irrigation areas. This study proposes a level-of-detail (LOD)-based dynamic classification integration method for hydraulic structure models and 3D terrain models, called CM-D-LOD. Hydraulic structures are classified according to their point, line, and surface morphologies, as well as their dependence on or independence of the terrain into four categories: point-like hydraulic structures independent of terrain, line-like hydraulic structures dependent on terrain, surface-like hydraulic structures dependent on terrain, and surface-like hydraulic structures independent of terrain. By utilizing the proposed model classification integration method, a visualization management platform for virtual geographical environments of irrigation areas is developed, and experiments are conducted in the Zhuluo Ba Irrigation Area within the large economic zone along China's eastern coast. Results demonstrate that the integration accuracy can be controlled between 0.2 and 0.7 m and that the 3D virtual scene of the irrigation area can be updated in real time. The proposed classification integration method transforms the traditional global model integration approach into a more efficient one, significantly improving the efficiency of constructing virtual geographical scenes for irrigation areas.

3.
Robot Rep ; 2(1): 1-14, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39263556

ABSTRACT

Soft pneumatic actuators (SPAs) produce motions for soft robots with simple pressure input, however, they require to be appropriately designed to fit the target application. Available design methods employ kinematic models and optimization to estimate the actuator response and the optimal design parameters to achieve a target actuator's shape. Within SPAs, bellow SPAs excel in rapid prototyping and large deformation, yet their kinematic models often lack accuracy due to the geometry complexity and the material nonlinearity. Furthermore, existing shape-matching algorithms are not providing an end-to-end solution from the desired shape to the actuator. In addition, despite the availability of computational design pipelines, an accessible and user-friendly toolbox for direct application remains elusive. This article addresses these challenges, offering an end-to-end shape-matching design framework for bellow SPAs to streamline the design process, and the open-source toolbox SPADA (Soft Pneumatic Actuator Design frAmework) implementing the framework with a graphic user interface for easy access. It provides a kinematic model grounded on a modular design to improve accuracy, finite element method (FEM) simulations, and piecewise constant curvature (PCC) approximation. An artificial neural network-trained surrogate model, based on FEM simulation data, is trained for fast computation in optimization. A shape-matching algorithm, merging three-dimensional (3D) PCC segmentation and a surrogate model-based genetic algorithm, identifies optimal actuator design parameters for desired shapes. The toolbox, implementing the proposed design framework, has proven its end-to-end capability in designing actuators to precisely match two-dimensional shapes with root-mean-squared-errors of 4.16, 2.70, and 2.51 mm, and demonstrating its potential by designing a 3D deformable actuator.

4.
Oncol Res ; 32(9): 1467-1478, 2024.
Article in English | MEDLINE | ID: mdl-39220121

ABSTRACT

Objectives: Thyroid cancer (THCA) is the most common malignant tumor in endocrine system and the incidence has been increasing worldwide. And the number of patients dying from THCA has also gradually risen because the incidence continues to increase, so the mechanisms related to effective targets is necessary to improve the survival. This study was to preliminarily investigate the effects of the COL4A2 gene on the regulation of thyroid cancer (THCA) cell proliferation and the associated pathways. Methods: Bioinformatics analysis revealed that COL4A2 was closely associated with cancer development. COL4A2 expression in THCA tissues was analyzed using immunohistochemistry, and survival information was determined via Kaplan‒Meier curves. The expression of COL4A2 and AKT pathway-related genes were analyzed using qPCR and western blot analyses. Colony formation as well as CCK-8 assays exhibited the cell proliferation level and cell activity, respectively. Downstream of COL4A2 was identified by Gene set enrichment analysis (GSEA). The effects of the COL4A2 and AKT pathways on THCA tumor growth in vivo were determined using a mouse model. Results: Bioinformatics analysis exhibited that COL4A2 plays a significant role in cancer and that the AKT pathway is downstream of COL4A2. THCA patients with high COL4A2 expression had shorter recurrence-free survival. Upregulation of COL4A2 gene expression in 2 THCA cell lines promoted tumor cell growth and activity. The use of AKT pathway blockers also restrained the growth and activity of the 2 THCA cell lines. The use of AKT pathway blockers reduced tumor volume and mass and prolonged mouse survival. Conclusions: COL4A2 can promote the growth as well as development of THCA through the AKT pathway and COL4A2 could be used as a target for THCA.


Subject(s)
Cell Proliferation , Collagen Type IV , Proto-Oncogene Proteins c-akt , Signal Transduction , Thyroid Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Animals , Mice , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Collagen Type IV/metabolism , Collagen Type IV/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Female , Male , Computational Biology/methods , Xenograft Model Antitumor Assays , Prognosis
5.
Int J Biol Macromol ; 279(Pt 4): 135396, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39265908

ABSTRACT

In this study, the synergistic effect and weak gel mechanism of XG and Gleditsia sinensis polysaccharide (GSP) in different ratios were studied through the rheological properties, microstructure and molecular simulation based on density functional theory (DFT). The results of rheological properties showed that the mixtures formed a weak gel at the concentration of 0.5 % (w/v), with the synergistic impact peaking at a XG/GSP ratio of 3:7. Weak gels produced by XG and GSP had the intersection of G' and G" within the temperature sweep range, and the largest change in the G' slope at a XG/GSP ratio of 3:7. By calculating the interaction energy, it was found that the backbone of XG was more likely to interact with the backbone of GSP. Furthermore, the XG mainchain intersected with the backbone of GSP in a cross shape ("X" shape). As a result, this paper proposed a possible mechanism for the formation of the XG/GSP weak gel, with XG as the main chain and GSP as the grid point, and the main interaction type being hydrogen bonding, with the van der Waals force also involved. The results provide new insight for designing and producing physical gels with specific interactions in food industry.

6.
Int J Biol Macromol ; 279(Pt 4): 135512, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39260633

ABSTRACT

Tobacco stalks, as one of the annual economic crops rich in biomacromolecules such as cellulose and hemicellulose, are more difficult to decompose into cellulose fibers due to their high degree of lignification compared to other ordinary straw feedstocks, resulting in their underutilization. In this study, we developed a mild three-stage alkali­oxygen (AO) process to efficiently deconstruct the tobacco stalk cell walls. The process, involving alkaline dosages of 15 %, 10 %, and 3 % at each stage, effectively dissociated the cell walls and yielded cellulose fibers with high brightness (42.0 % ISO). The organics in the spent liquor, including lignin, hemicellulose, and small-molecular extracts, were isolated through acid/ethanol precipitation and organic solvent extraction. Lignin characterization by 2D HSQC NMR indicated that the majority of native ß-aryl ether linkages were preserved after AO treatment, making it suitable for producing chemicals or biofuels via depolymerization. Additionally, the small-molecular extracts contained numerous depolymerized products from lignin and carbohydrates, as well as bioactive compounds derived from the tobacco stalk. Overall, this mild, efficient, and eco-friendly process offers a promising approach for the valorization of tobacco stalks and similar biomass resources.

7.
Talanta ; 281: 126820, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39260247

ABSTRACT

With the rapid expansion of the health food industry, the scope of safety supervision has also increased. However, traditional instrument detection methods cannot meet the requirements for the rapid on-site detection. Hence, the development of a rapid, precise, and simple method for the analysis of illegal additives in health foods is of great importance. In this work, by using FeCo-MOFs as mimetic peroxidase to mediate Au nanorods (Au NRs) etching, a dual-mode immunosensor based on multi-colorimetric and photothermal signals was fabricated to detect furosemide (FUR). In multi-colorimetric channel, the localized surface plasmon resonance (LSPR) peaks of Au NRs shifted blue, resulting in multi-color changes from red to gray to blue and finally to purple. In photothermal channel, the photothermal effect of Au NRs decreased, resulting in temperature changes. In the range of 1.0 × 10-5-1.0 × 10-2 µg/mL, both LSPR peak blue shift and temperature changes were linearly correlated with the logarithm of FUR concentration, with the detection limits were 4.9 × 10-6 and 8.5 × 10-6 µg/mL, respectively. Furthermore, its concentration can be accurately and intuitively assessed through the observation of vivid colorimetric changes. This advancement offers a highly promising approach for the on-site detection of FUR, facilitating timely and efficient monitoring, thereby significantly enhancing regulatory compliance and ensuring consumer safety.

8.
Sci Rep ; 14(1): 18935, 2024 08 15.
Article in English | MEDLINE | ID: mdl-39147923

ABSTRACT

Acute pancreatitis, a common exocrine inflammatory disease affecting the pancreas, is characterized by intense abdominal pain and multiple organ dysfunction. However, the alterations in retinal blood vessels among individuals with acute pancreatitis remain poorly understood. This study employed optical coherence tomography angiography (OCTA) to examine the superficial and deep retinal blood vessels in patients with pancreatitis. Sixteen patients diagnosed with pancreatitis (32 eyes) and 16 healthy controls (32 eyes) were recruited from the First Affiliated Hospital of Nanchang University for participation in the study. Various ophthalmic parameters, such as visual acuity, intraocular pressure, and OCTA image for retina consisting of the superficial retinal layer (SRL) and the deep retinal layer (DRL), were recorded for each eye. The study observed the superficial and deep retinal microvascular ring (MIR), macrovascular ring (MAR), and total microvessels (TMI) were observed. Changes in retinal vascular density in the macula through annular partitioning (C1-C6), hemispheric quadrant partitioning (SR, SL, IL, and IR), and early diabetic retinopathy treatment studies (ETDRS) partitioning methods (R, S, L, and I). Correlation analysis was employed to investigate the relationship between retinal capillary density and clinical indicators. Our study revealed that in the superficial retinal layer, the vascular density of TMI, MIR, MAR, SR, IR, S, C2, C3 regions were significantly decreased in patients group compared with the normal group. For the deep retinal layer, the vascular density of MIR, SR, S, C1, C2 regions also reduced in patient group. The ROC analysis demonstrated that OCTA possesses significant diagnostic performance for pancreatitis. In conclusion, patients with pancreatitis may have retinal microvascular dysfunction, and OCTA can be a valuable tool for detecting alterations in ocular microcirculation in pancreatitis patients in clinical practice.


Subject(s)
Pancreatitis , Retinal Vessels , Tomography, Optical Coherence , Adult , Aged , Female , Humans , Male , Middle Aged , Case-Control Studies , Clinical Relevance , Microvessels/diagnostic imaging , Microvessels/pathology , Microvessels/physiopathology , Pancreatitis/complications , Pancreatitis/pathology , Pancreatitis/physiopathology , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Tomography, Optical Coherence/methods , Visual Acuity
9.
Infect Agent Cancer ; 19(1): 36, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118158

ABSTRACT

BACKGROUND: This study aimed to investigate whether persistent human papillomavirus integration at the same loci (PHISL) before and after treatment can predict recurrent/residual disease in women with CIN2-3. METHODS: A total of 151 CIN2-3 women treated with conization between August 2020 and September 2021 were included. To investigate the precision of HPV integration, we further analyzed HPV integration-positive patients. Sensitivity, specificity, positive and negative predictive values (PPV and NPV, respectively), and the Youden index for predicting recurrence/residual disease were calculated. RESULTS: Among the 151 enrolled CIN2-3 women, 56 were HPV integration-positive and 95 had HPV integration-negative results. Six (10.7%) experienced recurrence among 56 HPV integration-positive patients, which was more than those in HPV integration-negative patients (one patient, 1.1%). In the 56 HPV integration-positive patients, 12 had positive HPV results after treatment, seven had PHISL, and two had positive cone margin. Among the seven patients who tested with PHISL, six (85.7%) had residual/recurrent disease. PHISL was a prominent predictor of persistent/recurrent disease. The HPV test, the HPV integration test, and PHISL all had a sensitivity of 100% and a NPV of 100% for residual/recurrent disease. PHISL showed better specificity (98.0% vs. 82.0%, p = 0.005) and PPV (85.7% vs. 40.0%, p = 0.001) than the HPV test for predicting recurrence. CONCLUSIONS: The HPV-integration-positive CIN2-3 women had much higher relapse rates than HPV-integration-negative CIN2-3 women. The findings indicate that PHISL derived from preoperative and postoperative HPV integration tests may be a precise biomarker for the identification of residual/recurrent CIN 2/3.

10.
Microorganisms ; 12(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39203393

ABSTRACT

Groundwater is one of the important freshwater resources on Earth and is closely related to human activities. As a good biological vector, a more diverse repertory of antibiotic resistance genes in the water environment would have a profound impact on human medical health. Therefore, this study conducted a metagenomic sequencing analysis of water samples from groundwater monitoring points in the middle and lower reaches of the Yangtze River to characterize microbial community composition and antibiotic resistance in the groundwater environment. Our results show that different microbial communities and community composition were the driving factors in the groundwater environment, and a diversity of antibiotic resistance genes in the groundwater environment was detected. The main source of antibiotic resistance gene host was determined by correlation tests and analyses. In this study, metagenomics was used for the first time to comprehensively analyze microbial communities in groundwater systems in the middle and lower reaches of the Yangtze River basin. The data obtained from this study serve as an invaluable resource and represent the basic metagenomic characteristics of groundwater microbial communities in the middle and lower reaches of the Yangtze River basin. These findings will be useful tools and provide a basis for future research on water microbial community and quality, greatly expanding the depth and breadth of our understanding of groundwater.

11.
J Surg Oncol ; 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183488

ABSTRACT

BACKGROUND: To explore the most effective adjuvant chemotherapy regimen for malignant peritoneal mesothelioma (MPM) through patient derived tumor-like cell clusters (PTC) drug sensitivity test. METHODS: PTC were cultured in vitro with intraoperative specimens, and drug sensitivity test was performed to calculate the most effective chemotherapy regimen for MPM. The patients were divided into conventional and individualized chemotherapy group according to whether they received PTC drug testing. Univariate and multivariate analyses were conducted to identify independent prognostic factors. RESULTS: Among 186 MPM patients included, 63 underwent PTC culture and drug sensitivity test. The results showed that the most effective chemotherapy regimen was oxaliplatin + gemcitabine. After propensity score matching, a total of 64 patients were enrolled in the following study, including 32 patients receiving individualized chemotherapy guided by PTC drug results as group 1 and 32 patients receiving conventional chemotherapy as group 2. Survival analysis showed that the median OS of group 1 was not reached, significantly longer than that of group 2 (23.5 months) (p < 0.05). CONCLUSIONS: Compared with conventional chemotherapy, individualized chemotherapy guided by PTC drug sensitivity tests can prolong patient survival, and oxaliplatin + gemcitabine + apatinib could be the optimal adjuvant treatment regimen for MPM.

12.
J Inorg Biochem ; 260: 112695, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39153452

ABSTRACT

An ideal tumor treatment strategy involves therapeutic approaches that can enhance the immunogenicity of the tumor microenvironment while simultaneously eliminating the primary tumor. A cholic acid-modified iridium(III) (Ir3) photosensitizer, targeted to the endoplasmic reticulum (ER), has been reported to exhibit potent type I and type II photodynamic therapeutic effects against triple-negative breast cancer (MDA-MB-231). This photosensitizer induces pyroptotic cell death mediated by gasdermin E (GSDME) through photodynamic means and enhances tumor immunotherapy. Mechanistic studies have revealed that complex Ir3 induces characteristics of damage-related molecular patterns (DAMPs) in MDA-MB-231 breast cancer cells under light conditions. These include cell-surface calreticulin (CRT) eversion, extracellular high mobility group box 1 (HMGB1) and ATP release, accompanied by ER stress and increased reactive oxygen species (ROS). Consequently, complex Ir3 promotes dendritic cell maturation and antigen presentation under light conditions, fully activates T cell-dependent immune response in vivo, and ultimately eliminates distant tumors while destroying primary tumors. In conclusion, immune regulation and targeted intervention mediated by metal complexes represent a new and promising approach to tumor therapy. This provides an effective strategy for the development of combined targeted therapy and immunotherapy.


Subject(s)
Endoplasmic Reticulum , Immunotherapy , Iridium , Photosensitizing Agents , Pyroptosis , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Humans , Iridium/chemistry , Iridium/pharmacology , Pyroptosis/drug effects , Immunotherapy/methods , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Mice , Female , Photochemotherapy/methods , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Endoplasmic Reticulum Stress/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Triple Negative Breast Neoplasms/pathology
13.
Small ; : e2403659, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169702

ABSTRACT

The shrinkage of metal oxide semiconductor field effect transistor (MOSFET) to the small size of the nanoscale results in changes in their channel current noise composition. This paper determines the channel current noise composition of 90 nm MOSFET through experiments, and according to the device material and noise characteristics analysis, the channel current noise of 90 nm and below is obtained, which not only contains thermal noise and suppressed channel shot noise, but also adds suppressed gate tunneling shot noise and cross-correlation noise. Then, Monte Carlo simulation of 10 nm MOSFET noise is further used to determine the channel current composition of small size nanoscale devices. Subsequently, based on the device structure and fundamental characteristics of channel current noise, the channel current noise model is established. Finally, this model is employed to analyze the relationship between thermal noise, suppressed shot noise, cross-correlation noise, and channel current noise in relation to bias parameters and device characteristics. The theoretical results are basically consistent with the experimental and the simulated results, and the channel noise increases with the increase of bias voltage. This achievement holds promise for enhancing the operational efficiency, reliability, and lifetime of nanoscale small-sized MOSFET devices.

14.
Nanomaterials (Basel) ; 14(16)2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39195397

ABSTRACT

As field effect transistors are reduced to nanometer dimensions, experimental and theoretical research has shown a gradual change in noise generation mechanisms. There are few studies on noise theory for small nanoscale transistors, and Monte Carlo (MC) simulations mainly focus on 2D devices with larger nanoscale dimensions. In this study, we employed MC simulation techniques to establish a 3D device simulation process. By setting device parameters and writing simulation programs, we simulated the raw data of channel current noise for a silicon-based metal-oxide-semiconductor field-effect transistor (MOSFET) with a 10 nm channel length and calculated the drain output current based on these data, thereby achieving static testing of the simulated device. Additionally, this study obtained a 3D potential distribution map of the device channel surface area. Based on the original data from the simulation analysis, this study further calculated the power spectral density of the channel current noise and analyzed how the channel current noise varies with gate voltage, source-drain voltage, temperature, and substrate doping density. The results indicate that under low-temperature conditions, the channel current noise of the 10 nm MOSFET is primarily composed of suppressed shot noise, with the proportion of thermal noise in the total noise slightly increasing as temperature rises. Under normal operating conditions, the channel current noise characteristics of the 10 nm MOSFET device are jointly characterized by suppressed shot noise, thermal noise, and cross-correlated noise. Among these noise components, shot noise is the main source of noise, and its suppression degree decreases as the bias voltage is reduced. These findings are consistent with experimental observations and theoretical analyses found in the existing literature.

15.
Article in English | MEDLINE | ID: mdl-39093850

ABSTRACT

Malignant peritoneal mesothelioma (MPeM) is a rare primary malignant tumor originating from peritoneal mesothelial cells. Insufficient specificity of the symptoms and their frequent reappearance following surgery make it challenging to diagnose, creating a need for more efficient treatment options. Natural killer cells (NK cells) are part of the innate immune system and are classified as lymphoid cells. Under the regulation of activating and inhibiting receptors, NK cells secrete various cytokines to exert cytotoxic effects and participate in antiforeign body, antiviral, and antitumor activities. This review provides a comprehensive summary of the specific alterations observed in NK cells following MPeM treatment, including changes in cell number, subpopulation distribution, active receptors, and cytotoxicity. In addition, we summarize the impact of various therapeutic interventions, such as chemotherapy, immunotherapy, and targeted therapy, on NK cell function post-MPeM treatment.

16.
Sci Transl Med ; 16(762): eadp1720, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196959

ABSTRACT

Autoimmune diseases, among the most common disorders of young adults, are mediated by genetic and environmental factors. Although CD4+FOXP3+ regulatory T cells (Tregs) play a central role in preventing autoimmunity, the molecular mechanism underlying their dysfunction is unknown. Here, we performed comprehensive transcriptomic and epigenomic profiling of Tregs in the autoimmune disease multiple sclerosis (MS) to identify critical transcriptional programs regulating human autoimmunity. We found that up-regulation of a primate-specific short isoform of PR domain zinc finger protein 1 (PRDM1-S) induces expression of serum and glucocorticoid-regulated kinase 1 (SGK1) independent from the evolutionarily conserved long PRDM1, which led to destabilization of forkhead box P3 (FOXP3) and Treg dysfunction. This aberrant PRDM1-S/SGK1 axis is shared among other autoimmune diseases. Furthermore, the chromatin landscape profiling in Tregs from individuals with MS revealed enriched activating protein-1 (AP-1)/interferon regulatory factor (IRF) transcription factor binding as candidate upstream regulators of PRDM1-S expression and Treg dysfunction. Our study uncovers a mechanistic model where the evolutionary emergence of PRDM1-S and epigenetic priming of AP-1/IRF may be key drivers of dysfunctional Tregs in autoimmune diseases.


Subject(s)
Autoimmunity , Forkhead Transcription Factors , Multiple Sclerosis , Positive Regulatory Domain I-Binding Factor 1 , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Humans , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , Positive Regulatory Domain I-Binding Factor 1/genetics , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Transcription Factor AP-1/metabolism , Transcription, Genetic , Animals , Chromatin/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology
17.
Soft Robot ; 11(4): 617-627, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39178399

ABSTRACT

Soft pneumatic actuators (SPAs) are commonly used in various applications because of their structural compliance, low cost, ease of manufacture, high adaptability, and safe human-robot interaction. The traditional approach for achieving proportional control of soft pneumatic robots requires the use of industrial proportional valves or syringe drivers, which are not only rigid and bulky but also hard to be integrated into the body of soft robots. In our previous research, we developed a Magnetorheological elastomer (MRE)-based soft valve that showed advantages for controlling SPAs due to its compliance, compactness, robustness, and compatibility for continuous pressure modulation. Modern soft robots with multiple chambers require more MRE valves onboard for their control. However, merely packing more MRE valves for soft robots can cause problems like magnetic interference, flow rate deviation, and overheating. Therefore, in this study, we proposed a two-dimensional MRE valve array design to solve issues of magnetic interference and overheating when expanding from a single MRE proportional valve into an integrated array. The magnetic interference and the overheating problem were investigated through multiphysics simulation, bringing the optimal choice of valve spacing (1.2 times the single valve diameter), magnetic coil pole arrangement (same pole), and the cooling system design (internal cooling chamber with flowing water). Physical experiments showed that our MRE valve array maintained its original flowrate performance with low magnetic interference (0.89 mT) and low coil temperature (under 73.9°C for 5 min).

18.
Water Res ; 265: 122302, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39178591

ABSTRACT

Enriching microorganisms using a 0.22-µm pore size is a general pretreatment procedure in river microbiome research. However, it remains unclear the extent to which this method loses microbiome information. Here, we conducted a comparative metagenomics-based study on microbiomes with sizes over 0.22 µm (large-sized) and between 0.22 µm and 0.1 µm (small-sized) in a subtropical river. Although the absolute concentration of small-sized microbiome was about two orders of magnitude lower than that of large-sized microbiome, sequencing only large-sized microbiome resulted in a significant loss of microbiome diversity. Specifically, the microbial community was different between two sizes, and 347 genera were only detected in small-sized microbiome. Small-sized microbiome had much more diverse viral community than large-sized fraction. The viruses had abundant ecological functions and were hosted by 825 species of 169 families, including pathogen-related families. Small-sized microbiome had distinct antimicrobial resistance risks from large-sized microbiome, showing an enrichment of eight antibiotic resistance gene (ARG) types as well as the detection of 140 unique ARG subtypes and five enriched risk rank I ARGs. Draft genomes of five major resistant pathogens having diverse ecological and pollutant-degrading functions were only assembled in small-sized microbiome. These findings provide novel insights into river ecosystems, and highlight the overlooked small-sized microbiome in the environment.


Subject(s)
Ecosystem , Microbiota , Rivers , Rivers/microbiology , Metagenomics , Bacteria/genetics
19.
Bioresour Technol ; 410: 131297, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153702

ABSTRACT

Swine wastewater (SW) contains high levels of traditional pollutants, antibiotics, and antibiotic resistance genes (ARGs), necessitating effective elimination. Two parallel aerobic granular sludge (AGS) reactors, R1 and R2, were constructed and optimized for treating SW from two pig farms, identified as SW1 and SW2. R2 showed higher antibiotic removal efficiency, particularly in the removal of sulfonamides, while fluoroquinolones tended to adsorb onto the sludge. Process optimization by introducing an additional anoxic phase enhanced denitrification and reduced effluent ARG levels, also aiding in the improved removal of fluoroquinolones. The nitrite-oxidizing bacteria (NOB) Nitrospira accumulated after the treatment process, reaching 12.8 % in R1 and 14.1 % in R2, respectively. Mantel's test revealed that pH, NH4+-N, and Mg significantly affected ARGs and microbial community. Sulfadiazine and sulfamethazine were found to significantly impact ARGs and the microbial communities. This study provides innovative insights into the application of AGS for the treatment of real SW.


Subject(s)
Anti-Bacterial Agents , Sewage , Wastewater , Animals , Sewage/microbiology , Anti-Bacterial Agents/pharmacology , Swine , Wastewater/chemistry , Aerobiosis , Drug Resistance, Microbial/genetics , Water Purification/methods , Bioreactors , Genes, Bacterial , Waste Disposal, Fluid/methods , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism , Water Pollutants, Chemical
20.
Bull Environ Contam Toxicol ; 113(2): 19, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080019

ABSTRACT

Environmental concentrations of antimicrobials can inhibit Cyanobacteria, but little is known about their effects on Cyanobacteria-blooming freshwater ecosystem. Here, a 21 days' outdoor freshwater mesocosm experiment was established to study effects of single and combined tetracycline, triclocarban and zinc at environmental concentrations on microbial community, microbial function and antimicrobial resistance using amplicon- and metagenomic-based methods. Results showed that three chemicals reshaped the microbial community with magnified effects by chemical combinations. Relative abundance of Cyanobacteria was decreased in all chemical groups, especially from 74.5 to 0.9% in combination of three chemicals. Microbial community networks were more simplified after exposure. Proteobacteria and Bacteroidetes predominated in Cyanobacteria-degraded ecosystems, and their relative abundances were significantly correlated with antibiotic resistome, suggesting that they might host antibiotic resistance genes. Notably, relative abundance (copy per 16 S rRNA gene) of total antibiotic resistome reached five to nine folds higher than the initial abundance in chemical-combined groups. The affected antibiotic resistance genes referred to a wide range of antibiotic classes. However, weak effects were detected on biocide/metal resistance and microbial virulence. Three chemicals posed complicated effects on microbial function, some of which had consistent variations across the groups, while some varied greatly in chemical groups. The findings highlight sensitivity of Cyanobacteria-blooming ecosystem to antimicrobials.


Subject(s)
Carbanilides , Cyanobacteria , Ecosystem , Fresh Water , Water Pollutants, Chemical , Zinc , Cyanobacteria/drug effects , Cyanobacteria/genetics , Zinc/toxicity , Carbanilides/toxicity , Fresh Water/microbiology , Water Pollutants, Chemical/toxicity , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/pharmacology , Tetracycline/pharmacology , Tetracycline/toxicity , Microbiota/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL