Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Environ Sci Technol ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39146316

ABSTRACT

Perfluorohexanesulfonic acid (PFHxS), an emerging short-chain per- and polyfluoroalkyl substance, has been frequently detected in aquatic environments. Adverse outcome pathway studies have shown that perfluorinated compounds impair lipid homeostasis through peroxisome proliferator activated receptors (PPARs). However, many of these studies were performed at high concentrations and may thus be a result of overt toxicity. To better characterize the molecular and key events of PFHxS to biota, early life-stage zebrafish (Danio rerio) were exposed to concentrations detected in the environment (0.01, 0.1, 1, and 10 µg/L). Lipidomic and transcriptomic evaluations were integrated to predict potential molecular targets. PFHxS significantly impaired lipid homeostasis by the dysregulation of glycerophospholipids, fatty acyls, glycerolipids, sphingolipids, prenol lipids, and sterol lipids. Informatic analyses of the lipidome and transcriptome indicated alterations of the PPAR signaling pathway, with downstream changes to retinol, linoleic acid, and glycerophospholipid metabolism. To assess the role of PPARs, potential binding of PFHxS to PPARs was predicted and animals were coexposed to a PPAR antagonist (GW6471). Molecular simulation indicated PFHxS had a 27.1% better binding affinity than oleic acid, an endogenous agonist of PPARα. Antagonist coexposures rescued impaired glycerophosphocholine concentrations altered by PFHxS. These data indicate PPARα activation may be an important molecular initiating event for PFHxS.

2.
Cancer Lett ; 585: 216665, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38290657

ABSTRACT

Glioblastoma (GBM) is an extremely aggressive tumor associated with a poor prognosis that impacts the central nervous system. Increasing evidence suggests an inherent association between glucose metabolism dysregulation and the aggression of GBM. Polo-like kinase 4 (PLK4), a highly conserved serine/threonine protein kinase, was found to relate to glioma progression and unfavorable prognosis. As revealed by the integration of proteomics and phosphoproteomics, PLK4 was found to be involved in governing metabolic processes and the PI3K/AKT/mTOR pathway. For the first time, this study supports evidence demonstrating that PLK4 activated PI3K/AKT/mTOR signaling through direct binding to AKT1 and subsequent phosphorylating AKT1 at S124, T308, and S473 to promote tumorigenesis and glucose metabolism in glioma. In addition, PLK4-mediated phosphorylation of AKT1 S124 significantly augmented the phosphorylation of AKT1 S473. Therefore, PLK4 exerted an influence on glucose metabolism by stimulating PI3K/AKT/mTOR signaling. Additionally, the expression of PLK4 protein exhibited a positive correlation with AKT1 phosphorylation in glioma patient tissues. These findings highlight the pivotal role of PLK4-mediated phosphorylation of AKT1 in glioma tumorigenesis and dysregulation of glucose metabolism.


Subject(s)
Glioblastoma , Glioma , Naphthalenes , Piperazines , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Glioma/genetics , Glioma/pathology , Phosphorylation , Glioblastoma/pathology , Carcinogenesis , Cell Transformation, Neoplastic , Glucose , Protein Serine-Threonine Kinases/metabolism
3.
J Hazard Mater ; 466: 133437, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38246063

ABSTRACT

A one-pot synthesis afforded a magnetic, crosslinked polymer adsorbent (m-P6) with a variety of functional groups to realize simultaneous adsorption of Cd2+, Pb2+, Hg2+, and As3+. The material was characterized by TEM-EDS, XRD, FT-IR, VSM, and XPS. Kinetic and isothermal analyses suggested mainly chemisorption processes of heavy metal ions that form multiple layers on heterogeneous surfaces. Theoretical adsorption capacities calculated by a pseudo-2nd-order kinetic model and the Sips isothermal model were 282.88 mg/g for Cd2+, 326.18 mg/g for Pb2+, 117.85 mg/g for Hg2+, and 320.29 mg/g for As3+. m-P6 not only can efficiently adsorb divalent heavy metals (Cd2+, Pb2+, Hg2+), but also demonstrate a process of adsorption-driven catalytic oxidation by single-electron transfer (SET) from As3+ to As5+. In application, in addition to adsorption in water, m-P6 is capable of minimizing matrix interference, and extracting trace heavy metals in a complex environment (cereal) through easy operations for improving the detection accuracy, as well as it is potential for application in detection of trace heavy metals in foodstuffs. m-P6 can be readily regenerated and efficiently recycled for 5 cycles using eluent E12 and dilute acid.

4.
Phytochemistry ; 217: 113926, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981062

ABSTRACT

Six previously undescribed rigidly monoterpenoid indole alkaloids, alstolactines F-K (1-6), were isolated from Alstonia scholaris. Among them, a pair of cage-like epimers, 1 and 2, featuring a rare 6/5/6/6/7 ring system, represent the first example of C5→C20-olide, while compound 3 possesses unique degraded C18 and C19. The structures of the isolates were established by multiple spectroscopic analyses, quantum computational chemistry methods, and X-ray diffraction. Furthermore, the expression levels of proteins including NLRP3, TLR4, P-p65, NF-ĸB, Notch-2, IL-18, P-p38, and p38 in LPS-induced human normal hepatocyte (LO2) cells could be significantly downregulated by compounds 1-6, which showed potent anti-inflammatory bioactivity.


Subject(s)
Alstonia , Secologanin Tryptamine Alkaloids , Humans , Alstonia/chemistry , Lactones , Secologanin Tryptamine Alkaloids/chemistry , Indoles , Hepatocytes , Indole Alkaloids , Molecular Structure
5.
J Sep Sci ; 46(17): e2200843, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37349854

ABSTRACT

Monoterpene indole alkaloids exhibit structural diversity in herbal resources and have been developed as promising drugs owing to their significant biological activities. Confidential identification and quantification of monoterpene indole alkaloids is the key to quality control of target plants in industrial production but has rarely been reported. In this study, quantitative performance of three data acquisition modes of ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry including full scan, auto-MS2 and target-MS2 , was evaluated and compared for specificity, sensitivity, linearity, precision, accuracy, and matrix effect using five monoterpene indole alkaloids (scholaricine, 19-epi-scholaricine, vallesamine, picrinine, and picralinal). Method validations indicated that target-MS2 mode showed predominant performance for simultaneous annotation and quantification of analytes, and was then applied to determine monoterpene indole alkaloids in Alstonia scholaris (leaves, barks) after extraction procedures optimization using Box-Behnken design of response surface methodology. The variations of A. scholaris monoterpene indole alkaloids in different plant parts, harvest periods, and post-handling processes, were subsequently investigated. The results indicated that target-MS2 mode could improve the quantitative capability of ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry for structure-complex monoterpene indole alkaloids in herbal matrices. Alstonia scholaris, monoterpene indole alkaloids, quadrupole time of flight mass spectrometry, qualitative and quantitative analysis, ultra-high-performance liquid chromatography.


Subject(s)
Alstonia , Secologanin Tryptamine Alkaloids , Chromatography, High Pressure Liquid , Alstonia/chemistry , Indole Alkaloids/chemistry , Mass Spectrometry/methods , Monoterpenes
6.
J Agric Food Chem ; 71(13): 5219-5229, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36971186

ABSTRACT

Zanthoxylum plants (ZPs), including multiple Chinese prickly ash species, are dual-purpose functional foods favored by the general population around the world in foods, cosmetics, and traditional medicines and have antipruritic, insecticidal, and fungicidal bioactivities. For the first time, the anti-roundworm bioactivity of ZPs and the active ingredients were compared and investigated. Through nontarget metabolomics following targeted quantitative analysis, qinbunamides, sanshools, sanshooel, asarinin, and sesamin were found to be the main different components of Zanthoxylum species. Coincidentally, the 12 chemical components were also the dominant anti-roundworm ingredients of ZP extracts. The extracts of three species of Chinese prickly ash (1 mg/mL) decreased the hatchability of roundworm eggs significantly, and the ChuanJiao seed killed roundworms (insecticidal rate 100%) and alleviated the symptoms of pneumonia in mice. Furthermore, retention time-accurate mass-tandem mass spectrometry-ion ratio (RT-AM-MS/MS-IR) were modeled by assaying 108 authentic compounds of ZP extracts, and 20 metabolites were confidently identified in biological samples from ZP extract-treated mice by analyzing the m/z values and the empirical substructures. This study provides a good reference for the proper application of ZPs.


Subject(s)
Lignans , Zanthoxylum , Humans , Mice , Animals , Zanthoxylum/chemistry , Tandem Mass Spectrometry , Lignans/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals
7.
Fitoterapia ; 166: 105464, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36848963

ABSTRACT

Three new steroidal alkaloids, veratrasines A - C (1-3), along with ten known analogues (4-13) were isolated from the roots of Veratrum stenophyllum. Their structures were elucidated by NMR and HRESIMS data and comparison with the reported data in the literatures. A plausible biosynthetic pathway for 1 and 2 were proposed. Compounds 1, 3, and 8 showed moderate cytotoxic activity against MHCC97H and H1299 cell lines.


Subject(s)
Alkaloids , Veratrum , Veratrum/chemistry , Molecular Structure , Plant Roots , Steroids , Veratrum Alkaloids/chemistry
8.
Chem Commun (Camb) ; 59(3): 326-329, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36511292

ABSTRACT

Veratrazine A (1), a steroidal alkaloid with a unique 6/5/5 triheterocyclic scaffold as the side chain, was isolated from Veratrum stenophyllum, and its structure was established via spectroscopic analyses and X-ray diffraction. A plausible biosynthetic pathway for 1 is proposed. Bioassy exhibits moderate anti-inflammatory activities in vitro and in vivo.


Subject(s)
Alkaloids , Antineoplastic Agents , Veratrum , Alkaloids/pharmacology , Alkaloids/chemistry , Plant Extracts/chemistry , Veratrum/chemistry , Steroids/pharmacology , Anti-Inflammatory Agents , Molecular Structure
9.
Mol Nutr Food Res ; 66(16): e2200126, 2022 08.
Article in English | MEDLINE | ID: mdl-35712860

ABSTRACT

SCOPE: Sweet potato (Ipomoea batatas L.) is one of the leading crops worldwide, containing high nutritional components such as fiber and polyphenols. Root tuber of Simon 1 (SIMON), a cultivar of sweet potato, is a folk food in China with a hemostasis function but lacking experimental data support. METHODS AND RESULTS: Now the protective effect of SIMON on chemotherapy-induced thrombocytopenia (CIT), a serious complication of cancer treatment, is investigated for the first time by a CIT mouse model induced by intraperitoneal injection of carboplatin. As a result, SIMON raises the number of peripheral platelets, white blood cells, and bone marrow nucleated cells in CIT mice significantly. Besides, carboplatin-induced atrophy of the thymus, spleen, and disordered metabolism of the inflammatory immune system and glycerophospholipids are also reversed by SIMON. Phytochemical analysis of SIMON indicates 16 compounds including eight phenolic derivatives, which might be associated with its anti-CIT bioactivity. CONCLUSION: Sweet potato (SIMON) may be an efficient function food in the prevention of bleeding disorders.


Subject(s)
Antineoplastic Agents , Ipomoea batatas , Thrombocytopenia , Animals , Carboplatin/metabolism , Functional Food , Ipomoea batatas/chemistry , Ipomoea batatas/metabolism , Mice , Thrombocytopenia/chemically induced , Thrombocytopenia/drug therapy , Thrombocytopenia/prevention & control
10.
Org Lett ; 24(24): 4333-4337, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35699727

ABSTRACT

Tuberindines A and B (1 and 2), truffle alkaloids with intriguing structures, were isolated from Tuber indicum and detected in other truffle species. They appear to arise biosynthetically from amino acid and isosaccharinic units. Compound 1 upregulated the expression of organic anion transporters OAT1 and ABCG2 and significantly exhibited antihyperuricemic bioactivity in vitro and in vivo, which might support the value of truffles as a dietary supplement.


Subject(s)
Alkaloids , Alkaloids/pharmacology , Skeleton
11.
J Ethnopharmacol ; 293: 115290, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35452774

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: "Li-Lu", the roots and rhizomes of Veratrum grandiflorum (Melianthiaceae), has been historically used as a traditional folk medicine for the treatment of wrist pain, fractures, sores, and inflammation in Yunnan Province, China. However, the anti-inflammatory and analgesic studies of this plant have seldom reported. AIM OF THE STUDY: To evaluate the anti-inflammatory and analgesic properties related to the traditional usage of V. grandiflorum both in vitro and in vivo, and further explore the accurate bioactive compounds from the medicinal plant. MATERIALS AND METHODS: Phytochemical investigation was carried out by chromatographic methods and their structures were established based on extensive spectra and comparison with corresponding data in the reported literatures. Anti-inflammatory activities were assessed by the suppression of lipopolysaccharide-activated inflammatory mediators in RAW 264.7 macrophage cells in vitro. Furthermore, anti-inflammatory and analgesic effects were evaluated based on carrageenan-induced paw edema and acetic acid-stimulated writhing in mice. RESULTS: The methanol extract (ME) of V. grandiflorum significantly alleviated the paw edema caused by carrageenan and the writhing numbers induced by acetic acid. Subsequent phytochemical investigation led to isolated of 21 steroidal alkaloids, including seven new compounds, veragranines C-I (1-7). Anti-inflammatory test indicated that steroidal alkaloids could decrease the expression of cyclooxygenase-2 (COX-2), interleukin-1ß (IL-1ß), and tumor necrosis factor α (TNF-α) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells at a concentration of 5.0 µg/ml in vitro, comparable to DXM. Moreover, five new steroidal alkaloids (2, 4, 5, 6, and 7) and two major steroidal alkaloids (9 and 13) significantly decreased the numbers of writhing in mice at the doses of 0.5 and/or 1.0 mg/kg (p < 0.01/0.05), roughly comparable to Dolantin™ at 10.0 mg/kg. CONCLUSIONS: The investigation supported the traditional use of V. grandiflorum and provided new steroidal alkaloids as potent analgesic agents.


Subject(s)
Alkaloids , Veratrum , Acetic Acid/therapeutic use , Alkaloids/adverse effects , Analgesics/chemistry , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/adverse effects , Carrageenan , China , Edema/chemically induced , Edema/drug therapy , Lipopolysaccharides/toxicity , Mice , Mice, Inbred ICR , Phytochemicals/therapeutic use , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
12.
ACS Appl Mater Interfaces ; 14(4): 6057-6070, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35042328

ABSTRACT

Multifunctional phase change materials (PCMs) are highly desirable for the thermal management of miniaturized and integrated electronic devices. However, the development of flexible PCMs possessing heat energy storage, shape memory, and adjustable electromagnetic interference (EMI) shielding properties under complex conditions remains a challenge. Herein, the multifunctional PCM composites were prepared by encapsulating poly(ethylene glycol) (PEG) into porous MXene/silver nanowire (AgNW) hybrid sponges by vacuum impregnation. Melamine foams (MFs) were chosen as a template to coat with MXene/AgNW (MA) to construct a continuous electrical/thermal conductive network. The MF@MA/PEG composites showed a high latent heat (141.3 J/g), high dimension retention ratio (96.8%), good electrical conductivity (75.3 S/m), and largely enhanced thermal conductivity (2.6 times of MF/PEG). Moreover, by triggering the phase change of the PEG, the sponges displayed a significant photoinduced shape memory function with a high shape fixation ratio (∼100%) and recovery ratio (∼100%). Interestingly, the EMI shielding effectiveness (SE) can be adjusted from 12.4 to 30.5 dB by a facile compression-recovery process based on shape memory properties. Furthermore, a finite element simulation was conducted to emphasize the advantage of the MF@MA/PEG composites in the thermal management of chips. Such flexible PCM composites with high latent heat storage, light-actuated shape memory, and adjustable EMI shielding functions exhibit great potential as smart thermal management materials in military and aerospace applications.

13.
Org Lett ; 24(2): 467-471, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34477387

ABSTRACT

Two distinctive alkaloids with 6/6/6/5/6/6 fused rings, in which a previously unidentified linkage of C-12/23 generates a rigid skeleton, resulting in a new subtype of steroidal alkaloid, were isolated from Veratrum grandiflorum. Compounds 1 and 2 showed potent analgesic effects in vivo, superior to the well-known analgesic, pethidine (Dolantin), likely by inhibiting CaV2.2 voltage-gated calcium channels.

14.
J Org Chem ; 86(23): 16764-16769, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34723525

ABSTRACT

Hyperectumine (1), the first C19 benzylisoquinoline alkaloid with a complicated ring system, was isolated from Hypecoum erectum and structurally characterized. Its biosynthetic origin should involve a hybrid pattern of C8 + C8 + C1 + C2, from which a C17 benzylisoquinoline alkaloid might be further attacked by a malonamic acid and undergo decarboxylation and cyclization to produce 1. Compound (-)-1 exhibited moderate anti-inflammatory activity via suppression of LPS-activated inflammatory mediators in RAW 264.7 macrophage cells.


Subject(s)
Alkaloids , Benzylisoquinolines , Alkaloids/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Benzylisoquinolines/pharmacology , Macrophages , Mice , RAW 264.7 Cells
15.
J Ethnopharmacol ; 281: 114542, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34428525

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: The root bark of Morus alba Linn. (M. alba), a traditional folk medicine, has been documented in the Chinese Pharmacopoeia, which has been widely used for asthma, fever, pneumonia, edema, vomit, colitis, bronchitis and keratitis diseases. Some of the diseases may be related to respiratory, digestive, urinary tract infections. Although Diels-Alder adducts (DAAs), flavonoids, 2-arylbenzofurans and stilbene compounds have been isolated from the root bark of M. alba, few compounds are reported for their antimicrobial efficacy in vivo and the mechanism. AIM OF THE STUDY: The aim of the study was to isolate and identify compounds of the root bark of M. alba in view of their anti-MRSA bioactivity, evaluate the anti-MRSA bioactivity of compounds and 60% ethanol elution (MA-6) in vitro and in vivo, and explore preliminary antibacterial mechanism in order to provide natural resources against MRSA infection. MATERIALS AND METHODS: Systematic phytochemical investigations were carried out according to the thin layer chromatography (TLC) of the active fraction MA-6 to find more anti-MRSA ingredients. The compounds of the root bark of M. alba were separated by column chromatography and identified by LC-MS/MS and NMR spectroscopy. The anti-MRSA efficacy of the active ingredients were evaluated by broth microdilution method and a murine infection model. The mode of action of compounds was explored by time-kill curve and post-contact effect. The preliminary mechanism of compounds against MRSA was explored by drug efflux pumps and bacterial biofilms. RESULTS: Chemical isolation resulted in twenty-nine known compounds, most with one or more geranyl and prenyl units exhibited superior anti-MRSA bioactivity, with MIC values of 2-16 µg/mL. In addition, the mode of action indicated that compounds presented persistent antimicrobial effect, which also produced concentration-dependent and time-dependent killing activity or property. Preliminary mechanism showed that the compound kuwanon O (29) damaged the bacterial cell membranes, leading to the accumulation of antibiotics inside bacterial cells, moreover, MA-6 and kuwanon O (29) inhibited the efflux of drugs by combining with methicillin or ethidium bromide (EtBr), resulting in the MICs of EtBr and methicillin were obviously decreased three-fold. The anti-MRSA efficacy in vivo indicated that the active fraction MA-6 could reduce bacteria in spleen, liver, kidney and mortality of acutely infectious mice, which was better than the positive drug berberine chloride. CONCLUSION: Experimental investigation showed that the MA-6 and compound 29 have promising bioactivity against MRSA in vitro and in vivo, which might be used as a potential source of new antibacterial medicine or a potential efflux pump inhibitor against MRSA infection.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Morus/chemistry , Phytotherapy , Plant Extracts/pharmacology , Animals , Female , Mice , Mice, Inbred BALB C , Molecular Structure , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Random Allocation , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
16.
Org Lett ; 23(11): 4158-4162, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34013731

ABSTRACT

Two rearranged triterpenoids, representing new subtypes of pentacyclic triterpenoids, with unique 6/6/6/7/5 and 6/6/5/6/6/6 ring systems were isolated from Alstonia scholaris. Their structures were established by spectroscopic analysis, single-crystal X-ray diffraction, and electronic circular dichroism calculations. Both compounds exhibited potent antihyperuricemic bioactivity in vitro and in vivo.


Subject(s)
Alstonia/chemistry , Gout Suppressants/pharmacology , Triterpenes/pharmacology , Crystallography, X-Ray , Gout Suppressants/analysis , Gout Suppressants/chemistry , Plant Leaves/chemistry , Triterpenes/chemistry , Triterpenes/isolation & purification
17.
J Hazard Mater ; 417: 126074, 2021 09 05.
Article in English | MEDLINE | ID: mdl-34015709

ABSTRACT

Microwavable plastic food containers (MPFCs) are extensively used for food storage, cooking, rapid heating and as take-out containers. There is an urgent need to investigate whether MPFCs pose potential health risks, as a result of the migration of chemicals into foods. Herein, 42 intentionally added substances (IAS) and > 100 non-IAS (NIAS) migrating from MPFCs were identified in food simulants according to Regulation (EU). The migration of major IAS and NIAS was higher in 95% ethanol compared to other simulants, and gradually decreased following repeated use. NIAS, including Cramer class III toxic compounds, such as PEG oligomers of N,N-bis(2-hydroxyethyl) alkyl(C8-C18)amines, isomers of hexadecanamide and oleamide, and Irgafos 168 OXO were detected and exceeded the recommended limits in some MPFCs. Furthermore, microplastics (MPs) were detected with high values of over one million particles/L in some MPFCs in a single test, and migration behaviors of MPs in different MPFCs were diverse. Surprisingly, this rigorous migration might result in an annual intake of IAS/NIAS up to 55.15 mg and 150 million MPs particles if take-out food was consumed once a day. Multi-safety evaluation studies on the migration of various chemicals from MPFCs to foodstuffs during food preparation should be assessed.


Subject(s)
Food Packaging , Plastics , Food , Food Contamination/analysis , Microplastics , Plastics/analysis
18.
J Agric Food Chem ; 69(16): 4686-4696, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33876942

ABSTRACT

Chaenomeles speciosa (Sweet) Nakai is a dual-purpose Chinese herbal medicine and functional food favored by minorities in Southwest China, and its fruits are used for the treatment of dyspepsia, dysentery, enteritis, and rheumatism inflammation. Some diseases may be related to microbial infection; however, it is not known how the fruits possess antimicrobial activity. We evaluated the antimicrobial bioctivity of different evaluation extracts of C. speciosa fruits by in vitro and in vivo with colony-forming unit assays, and the strongest bioactive-guided fraction was selected for column chromatography (CC), UHPLC-QTOF-MS/MS, and NMR spectroscopy to confirm the chemical constituents. The most possible antimicrobial mechanism of C. speciosa fruits was explored by metabolomics approach, fluorescence microscopy imaging, and scanning electron microscopy (SEM). Thirty compounds, which were major characteristic ions of the bioactive fraction, were determined precisely. The bioactive fraction could inhibit 18 pathogenic microorganisms, significantly reduced, especially drug-resistant bacteria, compared to ampicillin sodium salt, fluconazole, and berberine chloride form; and the minimum inhibitory concentration (MIC) or minimum fungicidal concentration (MFC) values were in the range of 0.1-1 mg/mL. The compounds 2'-methoxyaucuparin (1) and oleanolic acid (20) not only have antibacterial activity but also may have synergistic effects. Further, the bioactive fraction might inhibit the biofilm formation, enhance immunity, and restore bacterial infection damage in vitro and in vivo to kill microorganisms. The data indicated that C. speciosa fruits' major bioactive fraction enriched with triterpenes, flavonoids, and phenolics could be developed as a functional supplement for individuals to prevent and treat microbial infection.


Subject(s)
Rosaceae , Tandem Mass Spectrometry , China , Chromatography, Liquid , Humans , Microbial Sensitivity Tests , Plant Extracts/pharmacology
19.
Med Oncol ; 38(5): 50, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33786682

ABSTRACT

Although various molecular subtypes of hepatocellular carcinoma (HCC) have been investigated, most of these studies identify HCC subtype based on genomic profiling. Few studies have investigated the classification based on immune signatures, and none have classified HCC based on Immune activation and immunosuppressive. We performed immune gene expression of tumor tissue in 374 HCC patients from The Cancer Genome Atlas (TCGA) database and used unsupervised consensus clustering to stratify tumors. We then used HCC patients from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) as replication datasets. Based on the expression of 782 immune-related genes, HCC was stratified into four distinct immune subtypes. Tumors in one cluster (high immune activation; high-IA) indicate a higher level of Immune activation, which was characterized by higher anti-tumor immunity, higher pro-tumor immune-suppressive cell types, higher fractions of CD8+ T cells and M0 Macrophages compared with other subtypes. The high-IA also presents higher cancer-related hallmark signatures, such as epithelial-mesenchymal transition (EMT), angiogenesis, and apoptosis. We also found subpopulations of regulatory and exhaustion T lymphocyte were characterized by an opposite trend in high-IA, though samples in high-IA response to immunotherapy with better survival. The comparison of the immune profile in tumor and normal tissue indicates the activation of immune responses which only occurred in high-IA patients, while we conducted comparison of cirrhosis and non-cirrhosis tumor immune signatures, immune response activation was almost occurred in high-IA, but some of immune responses occurred in low-IA (low immune activation).


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Gene Expression Profiling/methods , Genetic Heterogeneity , Immunogenetic Phenomena/genetics , Liver Neoplasms/genetics , Adult , Aged , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/immunology , Cohort Studies , Databases, Genetic , Female , Humans , Immunotherapy/methods , Liver Neoplasms/diagnosis , Liver Neoplasms/immunology , Male , Middle Aged , Tumor Microenvironment/genetics
20.
J Ethnopharmacol ; 271: 113830, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33465438

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Plants of the genus Glechoma have been abundantly used for thousands of years in China as folk treatments for cholelithiasis, urolithiasis, inflammation, and other conditions. AIM OF THE STUDY: This review discusses the potential application of Glechoma as an herbal medicine. The plant characteristics, ethnobotanical uses, phytochemistry, and pharmacological activities of Glechoma are summarized as a guide for phytochemical and pharmacological investigations. MATERIALS AND METHODS: Various search engines including SciFinder, Google Scholar, Scopus-Elsevier, Medline, Web of Science, and China National Knowledge Infrastructure were searched for publications on Glechoma using relevant keywords. Additionally, local records, books, and non-English journals were screened up to October 2020. RESULTS: The phytochemistry of several Glechoma plants has been systematically studied, and over one hundred different compounds have been isolated and identified. Terpenoids, flavonoids and polyphenols are the major secondary metabolites. Crude extracts and isolated compounds have been shown to exhibit various pharmacological activities including prevention of nephrolithiasis, anti-inflammatory, analgesic, anticomplement, antimicrobial, antioxidant, depigmenting, anticancer, and antiviral activities, among others. CONCLUSION: Glechoma species have been used as folk medicine to treat various diseases and have diverse biological activities, making them valuable starting materials for drug development. However, in most cases the pharmacological mechanisms, pharmacokinetics, toxicology, safety, and possible interactions with other drugs remain to be determined.


Subject(s)
Lamiaceae/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Animals , China , Ethnobotany , Humans , Medicine, Chinese Traditional , Phytochemicals/adverse effects , Phytochemicals/therapeutic use , Plant Extracts/adverse effects , Plant Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL