Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters








Publication year range
1.
J Phys Chem B ; 128(40): 9772-9784, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39328031

ABSTRACT

This study investigates the potential of antimicrobial peptides (AMPs) as alternatives to combat antibiotic resistance, with a focus on two AMPs containing unnatural amino acids (UAAs), E2-53R (16 AAs) and LE-54R (14 AAs). In both peptides, valine is replaced by norvaline (Nva), and tryptophan is replaced by 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic). Microbiological studies reveal their potent activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria without any toxicity to eukaryotic cells at test concentrations up to 32 µM. Circular dichroism (CD) spectroscopy indicates that these peptides maintain α-helical structures when interacting with G(-) and G(+) lipid model membranes (LMMs), a feature linked to their efficacy. X-ray diffuse scattering (XDS) demonstrates a softening of G(-), G(+) and eukaryotic (Euk33) LMMs and a nonmonotonic decrease in chain order as a potential determinant for bacterial membrane destabilization. Additionally, XDS finds a significant link between both peptides' interfacial location in G(-) and G(+) LMMs and their efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Lack of toxicity in eukaryotic cells may be related to their loss of α-helicity and their hydrocarbon location in Euk33 LMMs. Both AMPs with UAAs offer a novel strategy to wipe out antibiotic-resistant strains while maintaining human cells. These findings are compared with previously published data on E2-35, which consists of the natural amino acids arginine, tryptophan, and valine.


Subject(s)
Amino Acids , Microbial Sensitivity Tests , Amino Acids/chemistry , Gram-Negative Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Gram-Positive Bacteria/drug effects , Humans
2.
Soft Matter ; 20(20): 4088-4101, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38712559

ABSTRACT

This research addresses the growing menace of antibiotic resistance by exploring antimicrobial peptides (AMPs) as alternatives to conventional antibiotics. Specifically, we investigate two linear amphipathic AMPs, LE-53 (12-mer) and LE-55 (16-mer), finding that the shorter LE-53 exhibits greater bactericidal activity against both Gram-negative (G(-)) and Gram-positive (G(+)) bacteria. Remarkably, both AMPs are non-toxic to eukaryotic cells. The heightened effectiveness of LE-53 is attributed to its increased hydrophobicity (H) compared to LE-55. Circular dichroism (CD) reveals that LE-53 and LE-55 both adopt ß-sheet and random coil structures in lipid model membranes (LMMs) mimicking G(-) and G(+) bacteria, so secondary structure is not the cause of the potency difference. X-ray diffuse scattering (XDS) reveals increased lipid chain order in LE-53, a potential key distinction. Additionally, XDS study uncovers a significant link between LE-53's upper hydrocarbon location in G(-) and G(+) LMMs and its efficacy. Neutron reflectometry (NR) confirms the AMP locations determined using XDS. Solution small angle X-ray scattering (SAXS) demonstrates LE-53's ability to induce vesicle fusion in bacterial LMMs without affecting eukaryotic LMMs, offering a promising strategy to combat antibiotic-resistant strains while preserving human cell integrity, whereas LE-55 has a smaller ability to induce fusion.


Subject(s)
Antimicrobial Peptides , Humans , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Hydrophobic and Hydrophilic Interactions , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Gram-Negative Bacteria/drug effects
4.
Nat Commun ; 14(1): 7570, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989735

ABSTRACT

ADP-ribosylation factor 1 (Arf1) interacts with multiple cellular partners and membranes to regulate intracellular traffic, organelle structure and actin dynamics. Defining the dynamic conformational landscape of Arf1 in its active form, when bound to the membrane, is of high functional relevance and key to understanding how Arf1 can alter diverse cellular processes. Through concerted application of nuclear magnetic resonance (NMR), neutron reflectometry (NR) and molecular dynamics (MD) simulations, we show that, while Arf1 is anchored to the membrane through its N-terminal myristoylated amphipathic helix, the G domain explores a large conformational space, existing in a dynamic equilibrium between membrane-associated and membrane-distal conformations. These configurational dynamics expose different interfaces for interaction with effectors. Interaction with the Pleckstrin homology domain of ASAP1, an Arf-GTPase activating protein (ArfGAP), restricts motions of the G domain to lock it in what seems to be a conformation exposing functionally relevant regions.


Subject(s)
ADP-Ribosylation Factor 1 , ADP-Ribosylation Factors , ADP-Ribosylation Factor 1/genetics , ADP-Ribosylation Factor 1/metabolism , ADP-Ribosylation Factors/metabolism , Membranes/metabolism , GTPase-Activating Proteins/metabolism , Actins/metabolism
5.
Adv Nanobiomed Res ; 3(5)2023 May.
Article in English | MEDLINE | ID: mdl-37476397

ABSTRACT

Antibiotics are losing effectiveness as bacteria become resistant to conventional drugs. To find new alternatives, antimicrobial peptides (AMPs) are rationally designed with different lengths, charges, hydrophobicities (H), and hydrophobic moments (µH), containing only three types of amino acids: arginine, tryptophan, and valine. Six AMPs with low minimum inhibitory concentrations (MICs) and <25% toxicity to mammalian cells are selected for biophysical studies. Their secondary structures are determined using circular dichroism (CD), which finds that the % α-helicity of AMPs depends on composition of the lipid model membranes (LMMs): gram-negative (G(-)) inner membrane (IM) >gram-positive (G(+)) > Euk33 (eukaryotic with 33 mol% cholesterol). The two most effective peptides, E2-35 (16 amino acid [AA] residues) and E2-05 (22 AAs), are predominantly helical in G(-) IM and G(+) LMMs. AMP/membrane interactions such as membrane elasticity, chain order parameter, and location of the peptides in the membrane are investigated by low-angle and wide-angle X-ray diffuse scattering (XDS). It is found that headgroup location correlates with efficacy and toxicity. The membrane bending modulus KC displays nonmonotonic changes due to increasing concentrations of E2-35 and E2-05 in G(-) and G(+) LMMs, suggesting a bacterial killing mechanism where domain formation causes ion and water leakage.

6.
Biomacromolecules ; 24(6): 2804-2815, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37223955

ABSTRACT

SPLUNC1 (short palate lung and nasal epithelial clone 1) is a multifunctional host defense protein found in human respiratory tract with antimicrobial properties. In this work, we compare the biological activities of four SPLUNC1 antimicrobial peptide (AMP) derivatives using paired clinical isolates of the Gram-negative (G(-)) bacteria Klebsiella pneumoniae, obtained from 11 patients with/without colistin resistance. Secondary structural studies were carried out to study interactions between the AMPs and lipid model membranes (LMMs) utilizing circular dichroism (CD). Two peptides were further characterized using X-ray diffuse scattering (XDS) and neutron reflectivity (NR). A4-153 displayed superior antibacterial activity in both G(-) planktonic cultures and biofilms. NR and XDS revealed that A4-153 (highest activity) is located primarily in membrane headgroups, while A4-198 (lowest activity) is located in hydrophobic interior. CD revealed that A4-153 is helical, while A4-198 has little helical character, demonstrating that helicity and efficacy are correlated in these SPLUNC1 AMPs.


Subject(s)
Bacteria , Lung , Humans , Biofilms , Gram-Negative Bacteria , Lipids , Microbial Sensitivity Tests , Peptides
7.
J Mol Biol ; 435(8): 168009, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36773691

ABSTRACT

The HIV-1 Nef protein plays a critical role in viral infectivity, high-titer replication in vivo, and immune escape of HIV-infected cells. Nef lacks intrinsic biochemical activity, functioning instead through interactions with diverse host cell signaling proteins and intracellular trafficking pathways. Previous studies have established an essential role for Nef homodimer formation at the plasma membrane for most if not all its functions. Here we combined neutron reflectometry of full-length myristoylated Nef bound to model lipid bilayers with molecular simulations based on previous X-ray crystal structures of Nef homodimers. This integrated approach provides direct evidence that Nef associates with the membrane as a homodimer with its structured core region displaced from the membrane for partner protein engagement. Parallel studies of a dimerization-defective mutant, Nef-L112D, demonstrate that the helical dimerization interface present in previous crystal structures stabilizes the membrane-bound dimer. X-ray crystallography of the Nef-L112D mutant in complex with the SH3 domain of the Nef-associated host cell kinase Hck revealed a monomeric 1:1 complex instead of the 2:2 dimer complex formed with wild-type Nef. Importantly, the crystal structure of the Nef-L112D core and SH3 interface are virtually identical to the wild-type complex, indicating that this mutation does not affect the overall Nef fold. These findings support the intrinsic capacity of Nef to homodimerize at lipid bilayers using structural features present in X-ray crystal structures of dimeric complexes.


Subject(s)
Cell Membrane , HIV-1 , Lipid Bilayers , nef Gene Products, Human Immunodeficiency Virus , Cell Membrane/chemistry , Cell Membrane/metabolism , HIV-1/chemistry , HIV-1/metabolism , Lipid Bilayers/metabolism , src Homology Domains , Protein Multimerization , Crystallography, X-Ray , nef Gene Products, Human Immunodeficiency Virus/chemistry , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism , Molecular Dynamics Simulation
8.
Biophys J ; 122(6): 1033-1042, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36566351

ABSTRACT

High-resolution x-ray data are reported for the ordered phases of long-chain di-monounsaturated C22:1 phosphocholine lipid bilayers. Similar to PC lipids that have saturated chains, diC22:1PC has a subgel phase and a gel phase, but dissimilarly, we find no ripple phase. Our quantitative focus is on the structure of the gel phase. We have recorded 17 lamellar orders, indicating a very well-ordered structure. Fitting to a model provides the phases of the orders. The Fourier construction of the electron density profile has two well-defined headgroup peaks and a very sharp and deep methyl trough. The wide-angle scattering exhibits two Bragg rods that provide the area per molecule. They have an intensity pattern quite different than that of lipids with saturated chains. Models of chain packing indicate that ground state chain configurations are tilted primarily toward next nearest neighbors with an angle that is also consistent with the modeling of the electron density profile. Wide-angle modeling also indicates broken mirror symmetry between the monolayers. Our wide-angle results and our electron density profile together leads to the hypothesis that the sn-1 and sn-2 chains have equivalent penetration depths in contrast to the gel phase structure of lipids with saturated hydrocarbon chains.


Subject(s)
Lipid Bilayers , Phosphatidylcholines , Lipid Bilayers/chemistry , X-Ray Diffraction , Chemical Phenomena , Phosphatidylcholines/chemistry
9.
RSC Adv ; 12(49): 32046-32055, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36415550

ABSTRACT

Supramolecular interactions are well recognized and many of them have been extensively studied in chemistry. The formation of supramolecular complexes that rely on weak force interactions are less well studied in bilayer membranes. Herein, a supported bilayer membrane is used to probe the penetration of a complex between tetracycline and a macrocyclic polyether. In a number of bacterial systems, the presence of the macrocycle has been found to significantly enhance the potency of the antimicrobial in vitro. The crown·tetracycline complex has been characterized in solution, neutron reflectometry has probed complex penetration, and the phenomena have been modeled by computational methods.

10.
Langmuir ; 38(41): 12551-12561, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36194692

ABSTRACT

Protein-polysaccharide composite materials have generated much interest due to their potential use in medical science and biotechnology. A comprehensive understanding of the assembly mechanism and the mesoscale architecture is needed for fabricating protein-polysaccharide composite materials with desired properties. In this study, complex assemblies were built on silica surfaces through a layer-by-layer (LbL) approach using bovine beta-lactoglobulin variant A (ßLgA) and pectin as model protein and polysaccharide, respectively. We demonstrated the combined use of quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR) for elucidating the assembly mechanism as well as the internal architecture of the protein-polysaccharide complexes formed at the solid-liquid interface. Our results show that ßLgA and pectin interacted with each other and formed a cohesive matrix structure at the interface consisting of intertwined pectin chains that were cross-linked by ßLgA-rich domains. Although the complexes were fabricated in an LbL fashion, the complexes appeared to be relatively homogeneous with ßLgA and pectin molecules spatially distributed within the matrix structure. Our results also demonstrate that the density of ßLgA-pectin complex assemblies increased with both the overall and local charge density of pectin molecules. Therefore, the physical properties of the protein-polysaccharide matrix structure, including density and level of hydration, can be tuned by using polysaccharides with varying charge patterns, thus promoting the development of composite materials with desired properties.


Subject(s)
Pectins , Polysaccharides , Animals , Cattle , Hydrogen-Ion Concentration , Lactoglobulins/chemistry , Pectins/chemistry , Polysaccharides/chemistry , Silicon Dioxide
11.
Biophys J ; 121(19): 3684-3697, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35614853

ABSTRACT

KRas is a small GTPase and membrane-bound signaling protein. Newly synthesized KRas is post-translationally modified with a membrane-anchoring prenyl group. KRas chaperones are therapeutic targets in cancer due to their participation in trafficking oncogenic KRas to membranes. SmgGDS splice variants are chaperones for small GTPases with basic residues in their hypervariable domain (HVR), including KRas. SmgGDS-607 escorts pre-prenylated small GTPases, while SmgGDS-558 escorts prenylated small GTPases. We provide a structural description of farnesylated and fully processed KRas (KRas-FMe) in complex with SmgGDS-558 and define biophysical properties of this interaction. Surface plasmon resonance measurements on biomimetic model membranes quantified the thermodynamics of the interaction of SmgGDS with KRas, and small-angle x-ray scattering was used to characterize complexes of SmgGDS-558 and KRas-FMe structurally. Structural models were refined using Monte Carlo and molecular dynamics simulations. Our results indicate that SmgGDS-558 interacts with the HVR and the farnesylated C-terminus of KRas-FMe, but not its G-domain. Therefore, SmgGDS-558 interacts differently with prenylated KRas than prenylated RhoA, whose G-domain was found in close contact with SmgGDS-558 in a recent crystal structure. Using immunoprecipitation assays, we show that SmgGDS-558 binds the GTP-bound, GDP-bound, and nucleotide-free forms of farnesylated and fully processed KRas in cells, consistent with SmgGDS-558 not engaging the G-domain of KRas. We found that the dissociation constant, Kd, for KRas-FMe binding to SmgGDS-558 is comparable with that for the KRas complex with PDEδ, a well-characterized KRas chaperone that also does not interact with the KRas G-domain. These results suggest that KRas interacts in similar ways with the two chaperones SmgGDS-558 and PDEδ. Therapeutic targeting of the SmgGDS-558/KRas complex might prove as useful as targeting the PDEδ/KRas complex in KRas-driven cancers.


Subject(s)
Guanine Nucleotide Exchange Factors , Monomeric GTP-Binding Proteins , Genes, ras , Guanine Nucleotide Exchange Factors/metabolism , Guanosine Triphosphate/metabolism , Molecular Chaperones/metabolism , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism
12.
Biophys J ; 120(18): 4055-4066, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34384763

ABSTRACT

KRAS4B is a membrane-anchored signaling protein and a primary target in cancer research. Predictions from molecular dynamics simulations that have previously shaped our mechanistic understanding of KRAS signaling disagree with recent experimental results from neutron reflectometry, NMR, and thermodynamic binding studies. To gain insight into these discrepancies, we compare this body of biophysical data to back-calculated experimental results from a series of molecular simulations that implement different subsets of molecular interactions. Our results show that KRAS4B approximates an entropic ensemble of configurations at model membranes containing 30% phosphatidylserine lipids, which is not significantly shaped by interactions between the globular G-domain of KRAS4B and the lipid membrane. These findings revise our understanding of KRAS signaling and promote a model in which the protein samples the accessible conformational space in a near-uniform manner while being available to bind to effector proteins.


Subject(s)
Molecular Dynamics Simulation , Proto-Oncogene Proteins p21(ras) , Molecular Conformation , Phosphatidylserines , Protein Binding , Proto-Oncogene Proteins p21(ras)/genetics
13.
Sci Rep ; 11(1): 12620, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135370

ABSTRACT

In the search for novel broad-spectrum therapeutics to fight chronic infections, inflammation, and cancer, host defense peptides (HDPs) have garnered increasing interest. Characterizing their biologically-active conformations and minimum motifs for function represents a requisite step to developing them into efficacious and safe therapeutics. Here, we demonstrate that metallating HDPs with Cu2+ is an effective chemical strategy to improve their cytotoxicity on cancer cells. Mechanistically, we find that prepared as Cu2+-complexes, the peptides not only physically but also chemically damage lipid membranes. Our testing ground features piscidins 1 and 3 (P1/3), two amphipathic, histidine-rich, membrane-interacting, and cell-penetrating HDPs that are α-helical bound to membranes. To investigate their membrane location, permeabilization effects, and lipid-oxidation capability, we employ neutron reflectometry, impedance spectroscopy, neutron diffraction, and UV spectroscopy. While P1-apo is more potent than P3-apo, metallation boosts their cytotoxicities by up to two- and seven-fold, respectively. Remarkably, P3-Cu2+ is particularly effective at inserting in bilayers, causing water crevices in the hydrocarbon region and placing Cu2+ near the double bonds of the acyl chains, as needed to oxidize them. This study points at a new paradigm where complexing HDPs with Cu2+ to expand their mechanistic reach could be explored to design more potent peptide-based anticancer therapeutics.


Subject(s)
Antineoplastic Agents/pharmacology , Cell-Penetrating Peptides/pharmacology , Copper/chemistry , Lipid Bilayers/chemistry , A549 Cells , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Cell-Penetrating Peptides/chemistry , Fish Proteins/chemistry , Fish Proteins/pharmacology , HeLa Cells , Humans , Lipid Peroxidation , Models, Molecular
14.
Sci Adv ; 6(40)2020 09.
Article in English | MEDLINE | ID: mdl-32998886

ABSTRACT

Adenosine diphosphate-ribosylation factor (Arf) guanosine triphosphatase-activating proteins (GAPs) are enzymes that need to bind to membranes to catalyze the hydrolysis of guanosine triphosphate (GTP) bound to the small GTP-binding protein Arf. Binding of the pleckstrin homology (PH) domain of the ArfGAP With SH3 domain, ankyrin repeat and PH domain 1 (ASAP1) to membranes containing phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is key for maximum GTP hydrolysis but not fully understood. By combining nuclear magnetic resonance, neutron reflectometry, and molecular dynamics simulation, we show that binding of multiple PI(4,5)P2 molecules to the ASAP1 PH domain (i) triggers a functionally relevant allosteric conformational switch and (ii) maintains the PH domain in a well-defined orientation, allowing critical contacts with an Arf1 mimic to occur. Our model provides a framework to understand how binding of the ASAP1 PH domain to PI(4,5)P2 at the membrane may play a role in the regulation of ASAP1.

15.
Proc Natl Acad Sci U S A ; 117(39): 24258-24268, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32913056

ABSTRACT

The small GTPase KRAS is localized at the plasma membrane where it functions as a molecular switch, coupling extracellular growth factor stimulation to intracellular signaling networks. In this process, KRAS recruits effectors, such as RAF kinase, to the plasma membrane where they are activated by a series of complex molecular steps. Defining the membrane-bound state of KRAS is fundamental to understanding the activation of RAF kinase and in evaluating novel therapeutic opportunities for the inhibition of oncogenic KRAS-mediated signaling. We combined multiple biophysical measurements and computational methodologies to generate a consensus model for authentically processed, membrane-anchored KRAS. In contrast to the two membrane-proximal conformations previously reported, we identify a third significantly populated state using a combination of neutron reflectivity, fast photochemical oxidation of proteins (FPOP), and NMR. In this highly populated state, which we refer to as "membrane-distal" and estimate to comprise ∼90% of the ensemble, the G-domain does not directly contact the membrane but is tethered via its C-terminal hypervariable region and carboxymethylated farnesyl moiety, as shown by FPOP. Subsequent interaction of the RAF1 RAS binding domain with KRAS does not significantly change G-domain configurations on the membrane but affects their relative populations. Overall, our results are consistent with a directional fly-casting mechanism for KRAS, in which the membrane-distal state of the G-domain can effectively recruit RAF kinase from the cytoplasm for activation at the membrane.


Subject(s)
Proto-Oncogene Proteins p21(ras)/metabolism , raf Kinases/metabolism , Cell Membrane/metabolism , Molecular Dynamics Simulation
16.
Soft Matter ; 16(30): 7063-7076, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32756673

ABSTRACT

The substantial part of the water-soluble hemicellulose fraction, obtained when processing cellulose to produce paper and other products, has so far been discarded. The aim of this work is to reveal the interfacial properties of softwood hemicellulose (galactoglucomannan, GGM) in relation to their molecular and solution structure. In this study the sugar composition of GGM was characterised by chemical analysis as well as 1D and 2D NMR spectroscopy. Previously it has been demonstrated that hemicellulose has high affinity towards cellulose and has the ability to alter the properties of cellulose based products. This study is focused on the interactions between hemicellulose and the cellulose surface. Therefore, adsorption to hydrophobized silica and cellulose surfaces of two softwood hemicellulose samples and structurally similar seed hemicelluloses (galactomannans, GMs) was studied with ellipsometry, QCM-D and neutron reflectometry. Aqueous solutions of all samples were characterized with light scattering to determine how the degree of side-group substitution and molecular weight affect the conformation and aggregation of these polymers in the bulk. In addition, hemicellulose samples were studied with SAXS to investigate backbone flexibility. Light scattering results indicated that GM polymers form globular particles while GGMs were found to form rod-like aggregates in the solution. The polysaccharides exhibit higher adsorption to cellulose than on hydrophobic surfaces. A clear correlation between the increase in molecular weight of polysaccharides and increasing adsorbed amount on cellulose was observed, while the adsorbed amount on the hydrophobic surface was fairly independent of the molecular weight. The obtained layer thickness was compared with bulk scattering data and the results indicated flat conformation of the polysaccharides on the surface.

17.
J Appl Crystallogr ; 53(Pt 3): 800-810, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32684895

ABSTRACT

A framework is applied to quantify information gain from neutron or X-ray reflectometry experiments [Treece, Kienzle, Hoogerheide, Majkrzak, Lösche & Heinrich (2019). J. Appl. Cryst. 52, 47-59], in an in-depth investigation into the design of scattering contrast in biological and soft-matter surface architectures. To focus the experimental design on regions of interest, the marginalization of the information gain with respect to a subset of model parameters describing the structure is implemented. Surface architectures of increasing complexity from a simple model system to a protein-lipid membrane complex are simulated. The information gain from virtual surface scattering experiments is quantified as a function of the scattering length density of molecular components of the architecture and the surrounding aqueous bulk solvent. It is concluded that the information gain is mostly determined by the local scattering contrast of a feature of interest with its immediate molecular environment, and experimental design should primarily focus on this region. The overall signal-to-noise ratio of the measured reflectivity modulates the information gain globally and is a second factor to be taken into consideration.

18.
J Chem Theory Comput ; 16(5): 3408-3419, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32268061

ABSTRACT

We present a novel method to incorporate structural results from surface-sensitive scattering, such as X-ray or neutron reflectometry, into molecular dynamics simulations. While reflectometry techniques generally provide a means to determine the molecular-scale structures of organized interfacial films, they were recently shown to offer the capability to characterize the structures of protein-membrane complexes supported by a solid substrate. One-dimensional information inherent in the experimental results is used in the form of component volume occupancy (CVO) profiles, which describe the distribution of molecular components within an interfacial architecture, to construct real-space constraints in the form of a biasing potential for the simulation that vanishes when the simulated and experimental profiles agree. This approach improves the correspondence between simulation and experiment, as shown in the re-evaluation of an neutron-reflection-derived structure which was approximated by an independent molecular dynamics simulation in earlier work, and it also leads to faster equilibration of ensemble structures. We further show that time averaging the CVO profile that develops in the simulation while biasing with this approach permits fluctuations about the average that are necessary for conformational exploration of the system. This method is particularly valuable for studies of proteins at interfaces that contain disordered regions since the conformation of such regions is difficult to judge from the analysis of one-dimensional experimental profiles and may take prohibitively long to equilibrate in simulations.


Subject(s)
Membrane Proteins/chemistry , Molecular Dynamics Simulation , Neutron Diffraction , Protein Conformation
19.
Chemistry ; 26(28): 6247-6256, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32166806

ABSTRACT

In the quest for new antibiotics, two novel engineered cationic antimicrobial peptides (eCAPs) have been rationally designed. WLBU2 and D8 (all 8 valines are the d-enantiomer) efficiently kill both Gram-negative and -positive bacteria, but WLBU2 is toxic and D8 nontoxic to eukaryotic cells. We explore protein secondary structure, location of peptides in six lipid model membranes, changes in membrane structure and pore evidence. We suggest that protein secondary structure is not a critical determinant of bactericidal activity, but that membrane thinning and dual location of WLBU2 and D8 in the membrane headgroup and hydrocarbon region may be important. While neither peptide thins the Gram-negative lipopolysaccharide outer membrane model, both locate deep into its hydrocarbon region where they are primed for self-promoted uptake into the periplasm. The partially α-helical secondary structure of WLBU2 in a red blood cell (RBC) membrane model containing 50 % cholesterol, could play a role in destabilizing this RBC membrane model causing pore formation that is not observed with the D8 random coil, which correlates with RBC hemolysis caused by WLBU2 but not by D8.


Subject(s)
Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Lipopolysaccharides/chemistry , Membrane Lipids/chemistry , Pseudomonas aeruginosa/chemistry , Anti-Bacterial Agents/metabolism , Antimicrobial Cationic Peptides/metabolism , Cell Membrane/metabolism , Hemolysis , Lipopolysaccharides/metabolism , Membrane Lipids/metabolism , Microbial Sensitivity Tests , Protein Structure, Secondary
20.
Langmuir ; 36(13): 3393-3403, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32216370

ABSTRACT

Maintaining the integrity of cell membranes is indispensable for cellular viability. Poloxamer 188 (P188), a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer with a number-average molecular weight of 8700 g/mol and containing 80% by mass PEO, protects cell membranes from various external injuries and has the potential to be used as a therapeutic agent in diverse applications. The membrane protection mechanism associated with P188 is intimately connected with how this block copolymer interacts with the lipid bilayer, the main component of a cell membrane. Here, we report the distribution of P188 in a model lipid bilayer comprising 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) using neutron reflectivity (NR) and atomic force microscopy (AFM). We also investigated the association of a PEO homopolymer (PEO8.4K; Mn = 8400 g/mol) that does not protect living cell membranes. These experiments were conducted following incubation of a 4.5 mmol/L polymer solution in a buffer that mimics physiological conditions with supported POPC bilayer membranes followed by washing with the aqueous medium. In contrast to previous reports, which dealt with P188 and PEO in salt-free solutions, both P188 and PEO8.4K penetrate into the inner portion of the lipid bilayer as revealed by NR, with approximately 30% by volume occupancy across the membrane without loss of bilayer structural integrity. These results indicate that PEO is the chemical moiety that principally drives P188 binding to bilayer membranes. No defects or phase-separated domains were observed in either P188- or PEO8.4K-incubated lipid bilayers when examined by AFM, indicating that polymer chains mingle homogeneously with lipid molecules in the bilayer. Remarkably, the breakthrough force required for penetration of the AFM tip through the bilayer membrane is unaffected by the presence of the large amount of P188 and PEO8.4K.


Subject(s)
Lipid Bilayers , Propylene Glycols , Polyethylene Glycols , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL