Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
Neurology ; 103(7): e209800, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39250744

ABSTRACT

BACKGROUND AND OBJECTIVES: Despite their temporal lobe pathology, a significant subgroup of patients with temporal lobe epilepsy (TLE) is able to maintain normative cognitive functioning. In this study, we identify patients with TLE with intact vs impaired neurocognitive profiles and interrogate for the presence of both normative and highly individual intrinsic connectivity networks (ICNs)-all toward understanding the transition from impaired to intact neurocognitive status. METHODS: This retrospective cross-sectional study included patients with TLE and matched healthy controls (HCs) from the Thomas Jefferson Comprehensive Epilepsy Center. Functional MRI data were decomposed using independent component analysis to obtain individualized ICNs. In this article, we calculated the degree of match between individualized ICNs and canonical ICNs (e.g., 17 resting-state networks by Yeo et al.) and divided each participant's ICNs into normative or non-normative status based on the degree of match. RESULTS: 100 patients with TLE (mean age 42.0 [SD: 13.7] years, 47 women) and 92 HCs were included in this study. We found that the individualized networks matched to the canonical networks less well in the cognitively impaired (n = 24) compared with the cognitively intact (n = 63) patients with TLE by 2-way mixed-measures analysis of variance (impaired vs intact mean difference [MD] -0.165 [-0.317, -0.013], p = 0.028). The cognitively impaired patients showed significant abnormalities in the profiles of both normative (impaired vs intact MD -0.537 [-0.998, -0.076], p = 0.017, intact vs HC MD -0.221 [-0.536, 0.924], p = 0.220, and impaired vs HC MD -0.759 [-1.200, -0.319], p < 0.001) and non-normative networks (impaired vs intact MD 0.484 [0.030, 0.937], p = 0.033, intact vs HC MD 0.369 [0.059, 0.678], p = 0.014, and impaired vs HC MD 0.853 [0.419, 1.286], p < 0.001) while the intact patients showed abnormalities only in non-normative networks. At the same time, we found that normative networks held a strong, positive association with the neuropsychological measures, with this association negative in non-normative networks. DISCUSSION: Our data demonstrated that significant cognitive deficits are associated with the status of both canonical and highly individual ICNs, making clear that the transition from intact to impaired cognitive status is not simply the result of disruption to normative brain networks.


Subject(s)
Cognition , Epilepsy, Temporal Lobe , Magnetic Resonance Imaging , Nerve Net , Humans , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/psychology , Female , Male , Adult , Cross-Sectional Studies , Middle Aged , Retrospective Studies , Cognition/physiology , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Neuropsychological Tests
2.
Alzheimers Dement ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970274

ABSTRACT

INTRODUCTION: Understanding longitudinal change in key plasma biomarkers will aid in detecting presymptomatic Alzheimer's disease (AD). METHODS: Serial plasma samples from 424 Wisconsin Registry for Alzheimer's Prevention participants were analyzed for phosphorylated-tau217 (p-tau217; ALZpath) and other AD biomarkers, to study longitudinal trajectories in relation to disease, health factors, and cognitive decline. Of the participants, 18.6% with known amyloid status were amyloid positive (A+); 97.2% were cognitively unimpaired (CU). RESULTS: In the CU, amyloid-negative (A-) subset, plasma p-tau217 levels increased modestly with age but were unaffected by body mass index and kidney function. In the whole sample, average p-tau217 change rates were higher in those who were A+ (e.g., simple slopes(se) for A+ and A- at age 60 were 0.232(0.028) and 0.038(0.013))). High baseline p-tau217 levels predicted faster preclinical cognitive decline. DISCUSSION: p-tau217 stands out among markers for its strong association with disease and cognitive decline, indicating its potential for early AD detection and monitoring progression. HIGHLIGHTS: Phosphorylated-tau217 (p-tau217) trajectories were significantly different in people who were known to be amyloid positive. Subtle age-related trajectories were seen for all the plasma markers in amyloid-negative cognitively unimpaired. Kidney function and body mass index were not associated with plasma p-tau217 trajectories. Higher plasma p-tau217 was associated with faster preclinical cognitive decline.

3.
Epilepsy Behav ; 158: 109927, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970893

ABSTRACT

OBJECTIVE: Epilepsy is associated with significant health disparities, including access to specialized care and adverse outcomes that have been associated with several social determinants of health (SDOH). We sought to examine the relationship between individual- and community-level SDOH and cognitive outcomes in older adults with epilepsy. MATERIALS AND METHODS: We collected clinical, SDOH, and neuropsychological data in 57 older adults with epilepsy. Individual-level SDOH included patient factors (quality of education, income, insurance, marital status) and early-life environmental factors (parental education and occupation, childhood employment). Neighborhood deprivation was measured with the Area Deprivation Index (ADI). Stepwise regressions were conducted to examine the independent contribution of individual-level SDOH to cognitive performance, and Spearman rho correlations were conducted to examine the relationship between ADI and cognitive performance. The SDOH profiles of patients who met the criteria for cognitive impairment were examined. RESULTS: After controlling for clinical variables, patient factors (public health insurance, poorer quality of education) and early-life environmental factors (lower mother's education, lower father's and mother's occupational complexity, history of childhood employment) were significant predictors of lower performance on measures of global cognition, verbal learning and memory, processing speed, and executive function. Higher ADI values (greater disadvantage) were associated with lower scores on global cognitive measures, verbal learning and memory, and executive function. Patients who met criteria for cognitive impairment had, on average, a greater number of adverse SDOH, including lower household incomes and father's education, and higher ADI values compared to those who were cognitively intact. CONCLUSION: We provide new evidence of the role of individual- and community-level SDOH on cognitive outcomes in older adults with epilepsy. This emerging literature highlights the need to examine SDOH beyond epilepsy-related clinical factors. These data could inform the development of interventions focused on increasing access to epilepsy care, education, and resources and promoting brain and cognitive health within the most at-risk communities.


Subject(s)
Epilepsies, Partial , Neuropsychological Tests , Social Determinants of Health , Humans , Male , Female , Aged , Middle Aged , Epilepsies, Partial/psychology , Epilepsies, Partial/epidemiology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/epidemiology , Cognition/physiology , Residence Characteristics , Socioeconomic Factors , Aged, 80 and over
4.
Brain Commun ; 6(3): fcae176, 2024.
Article in English | MEDLINE | ID: mdl-38883806

ABSTRACT

Whilst the concept of a general mental factor known as 'g' has been of longstanding interest, for unknown reasons, it has never been interrogated in epilepsy despite the 100+ year empirical history of the neuropsychology of epilepsy. This investigation seeks to identify g within a comprehensive neuropsychological data set and compare participants with temporal lobe epilepsy to controls, characterize the discriminatory power of g compared with domain-specific cognitive metrics, explore the association of g with clinical epilepsy and sociodemographic variables and identify the structural and network properties associated with g in epilepsy. Participants included 110 temporal lobe epilepsy patients and 79 healthy controls between the ages of 19 and 60. Participants underwent neuropsychological assessment, clinical interview and structural and functional imaging. Cognitive data were subjected to factor analysis to identify g and compare the group of patients with control participants. The relative power of g compared with domain-specific tests was interrogated, clinical and sociodemographic variables were examined for their relationship with g, and structural and functional images were assessed using traditional regional volumetrics, cortical surface features and network analytics. Findings indicate (i) significantly (P < 0.005) lower g in patients compared with controls; (ii) g is at least as powerful as individual cognitive domain-specific metrics and other analytic approaches to discriminating patients from control participants; (iii) lower g was associated with earlier age of onset and medication use, greater number of antiseizure medications and longer epilepsy duration (Ps < 0.04); and lower parental and personal education and greater neighbourhood deprivation (Ps < 0.012); and (iv) amongst patients, lower g was linked to decreased total intracranial volume (P = 0.019), age and intracranial volume adjusted total tissue volume (P = 0.019) and age and intracranial volume adjusted total corpus callosum volume (P = 0.012)-particularly posterior, mid-posterior and anterior (Ps < 0.022) regions. Cortical vertex analyses showed lower g to be associated specifically with decreased gyrification in bilateral medial orbitofrontal regions. Network analysis of resting-state data with focus on the participation coefficient showed g to be associated with the superior parietal network. Spearman's g is reduced in patients, has considerable discriminatory power compared with domain-specific metrics and is linked to a multiplex of factors related to brain (size, connectivity and frontoparietal networks), environment (familial and personal education and neighbourhood disadvantage) and disease (epilepsy onset, treatment and duration). Greater attention to contemporary models of human cognition is warranted in order to advance the neuropsychology of epilepsy.

5.
Epilepsia Open ; 9(4): 1526-1537, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38874380

ABSTRACT

OBJECTIVE: This study evaluated the diagnostic performance of a widely available cognitive screener, the Montreal cognitive assessment (MoCA), to detect cognitive impairment in older patients (age ≥ 55) with epilepsy residing in the US, using the International Classification of Cognitive Disorders in Epilepsy (IC-CoDE) as the gold standard. METHODS: Fifty older adults with focal epilepsy completed the MoCA and neuropsychological measures of memory, language, executive function, and processing speed/attention. The IC-CoDE taxonomy divided participants into IC-CoDE Impaired and Intact groups. Sensitivity and specificity across several MoCA cutoffs were examined. Spearman correlations examined relationships between the MoCA total score and clinical and demographic variables and MoCA domain scores and individual neuropsychological tests. RESULTS: IC-CoDE impaired patients demonstrated significantly lower scores on the MoCA total, visuospatial/executive, naming, language, delayed recall, and orientation domain scores (Cohen's d range: 0.336-2.77). The recommended MoCA cutoff score < 26 had an overall accuracy of 72%, 88.2% sensitivity, and 63.6% specificity. A MoCA cutoff score < 24 yielded optimal sensitivity (70.6%) and specificity (78.8%), with overall accuracy of 76%. Higher MoCA total scores were associated with greater years of education (p = 0.016) and fewer antiseizure medications (p = 0.049). The MoCA memory domain was associated with several standardized measures of memory, MoCA language domain with category fluency, and MoCA abstraction domain with letter fluency. SIGNIFICANCE: This study provides initial validation of the MoCA as a useful screening tool for older adults with epilepsy that can be used to identify patients who may benefit from comprehensive neuropsychological testing. Further, we demonstrate that a lower cutoff (i.e., <24) better captures cognitive impairment in older adults with epilepsy than the generally recommended cutoff and provides evidence for construct overlap between MoCA domains and standard neuropsychological tests. Critically, similar efforts in other regions of the world are needed. PLAIN LANGUAGE SUMMARY: The Montreal cognitive assessment (MoCA) can be a helpful tool to screen for cognitive impairment in older adults with epilepsy. We recommend that adults 55 or older with epilepsy who score less than 24 on the MoCA are referred to a neuropsychologist for a comprehensive evaluation to assess any changes in cognitive abilities and mood.


Subject(s)
Cognitive Dysfunction , Epilepsy , Mental Status and Dementia Tests , Neuropsychological Tests , Humans , Female , Male , Aged , Middle Aged , Cognitive Dysfunction/diagnosis , Mental Status and Dementia Tests/standards , Epilepsy/diagnosis , Sensitivity and Specificity , Reproducibility of Results , Executive Function , Aged, 80 and over
6.
Epilepsia ; 65(8): 2386-2396, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878272

ABSTRACT

OBJECTIVE: Efforts to understand the global variability in cognitive profiles in patients with epilepsy have been stymied by the lack of a standardized diagnostic system. This study examined the cross-cultural applicability of the International Classification of Cognitive Disorders in Epilepsy (IC-CoDE) in a cohort of patients with temporal lobe epilepsy (TLE) in India that was diverse in language, education, and cultural background. METHODS: A cohort of 548 adults with TLE from Mumbai completed a presurgical comprehensive neuropsychological evaluation. The IC-CoDE taxonomy was applied to derive cognitive phenotypes in the sample. Analyses of variance were conducted to examine differences in demographic and clinical characteristics across the phenotypes, and chi-squared tests were used to determine whether the phenotype distribution differed between the Mumbai sample and published data from a multicenter US sample. RESULTS: Using the IC-CoDE criteria, 47% of our cohort showed an intact cognitive profile, 31% a single-domain impairment, 16% a bidomain impairment, and 6% a generalized impairment profile. The distribution of cognitive phenotypes was similar between the Indian and US cohorts for the intact and bidomain phenotypes, but differed for the single and generalized domains. There was a larger proportion of patients with single-domain impairment in the Indian cohort and a larger proportion with generalized impairment in the US cohort. Among patients with single-domain impairment, a greater proportion exhibited memory impairment in the Indian cohort, whereas a greater proportion showed language impairment in the US sample, likely reflecting differences in language administration procedures and sample characteristics including a higher rate of mesial temporal sclerosis in the Indian sample. SIGNIFICANCE: Our results demonstrate the applicability of IC-CoDE in a group of culturally and linguistically diverse patients from India. This approach enhances our understanding of cognitive variability across cultures and enables harmonized and inclusive research into the neuropsychological aspects of epilepsy.


Subject(s)
Cognition Disorders , Cross-Cultural Comparison , Epilepsy, Temporal Lobe , Neuropsychological Tests , Phenotype , Humans , Epilepsy, Temporal Lobe/diagnosis , India , Female , Male , Adult , Middle Aged , Cognition Disorders/diagnosis , Cognition Disorders/ethnology , Cognition Disorders/epidemiology , Neuropsychological Tests/statistics & numerical data , Cohort Studies , Young Adult , International Classification of Diseases
7.
ArXiv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38800648

ABSTRACT

We introduce a novel, data-driven topological data analysis (TDA) approach for embedding brain networks into a lower-dimensional space in quantifying the dynamics of temporal lobe epilepsy (TLE) obtained from resting-state functional magnetic resonance imaging (rs-fMRI). This embedding facilitates the orthogonal projection of 0D and 1D topological features, allowing for the visualization and modeling of the dynamics of functional human brain networks in a resting state. We then quantify the topological disparities between networks to determine the coordinates for embedding. This framework enables us to conduct a coherent statistical inference within the embedded space. Our results indicate that brain network topology in TLE patients exhibits increased rigidity in 0D topology but more rapid flections compared to that of normal controls in 1D topology.

8.
Sci Rep ; 14(1): 9806, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684843

ABSTRACT

Post-COVID condition (PCC) and multiple sclerosis (MS) share some clinical and demographic features, including cognitive symptoms and fatigue. Some pathophysiological mechanisms well-known in MS, such as autoimmunity, neuroinflammation and myelin damage, have also been implicated in PCC. In this study, we aimed to compare the cognitive phenotypes of two large cohorts of patients with PCC and MS, and to evaluate the relationship between fatigue and cognitive performance. Cross-sectional study including 218 patients with PCC and 218 with MS matched by age, sex, and years of education. Patients were evaluated with a comprehensive neuropsychological protocol and were categorized according to the International Classification of Cognitive Disorders system. Fatigue and depression were also assessed. Cognitive profiles of PCC and MS largely overlapped, with a greater impairment in episodic memory in MS, but with small effect sizes. The most salient deficits in both disorders were in attention and processing speed. The severity of fatigue was greater in patients with PCC. Still, the correlations between fatigue severity and neuropsychological tests were more prominent in the case of MS. There were no differences in the severity of depression among groups. Our study found similar cognitive profiles in PCC and MS. Fatigue was more severe in PCC, but was more associated with cognitive performance in MS. Further comparative studies addressing the mechanisms related to cognitive dysfunction and fatigue may be of interest to advance the knowledge of these disorders and develop new therapies.


Subject(s)
COVID-19 , Cognition , Cognitive Dysfunction , Fatigue , Multiple Sclerosis , Neuropsychological Tests , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/psychology , Male , Female , Middle Aged , Adult , Cross-Sectional Studies , COVID-19/complications , COVID-19/psychology , COVID-19/virology , Depression , Post-Acute COVID-19 Syndrome , SARS-CoV-2/isolation & purification
9.
Alzheimers Dement ; 20(5): 3305-3321, 2024 05.
Article in English | MEDLINE | ID: mdl-38539269

ABSTRACT

INTRODUCTION: Published norms are typically cross-sectional and often are not sensitive to preclinical cognitive changes due to dementia. We developed and validated demographically adjusted cross-sectional and longitudinal normative standards using harmonized outcomes from two Alzheimer's disease (AD) risk-enriched cohorts. METHODS: Data from the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center were combined. Quantile regression was used to develop unconditional (cross-sectional) and conditional (longitudinal) normative standards for 18 outcomes using data from cognitively unimpaired participants (N = 1390; mean follow-up = 9.25 years). Validity analyses (N = 2456) examined relationships between percentile scores (centiles), consensus-based cognitive statuses, and AD biomarker levels. RESULTS: Unconditional and conditional centiles were lower in those with consensus-based impairment or biomarker positivity. Similarly, quantitative biomarker levels were higher in those whose centiles suggested decline. DISCUSSION: This study presents normative standards for cognitive measures sensitive to pre-clinical changes. Future directions will investigate potential clinical applications of longitudinal normative standards. HIGHLIGHTS: Quantile regression was used to construct longitudinal norms for cognitive tests. Poorer percentile scores were related to concurrent diagnosis and Alzheimer's disease biomarkers. A ShinyApp was built to display test scores and norms and flag low performance.


Subject(s)
Alzheimer Disease , Biomarkers , Neuropsychological Tests , Humans , Alzheimer Disease/diagnosis , Male , Aged , Female , Neuropsychological Tests/standards , Neuropsychological Tests/statistics & numerical data , Longitudinal Studies , Wisconsin , Cross-Sectional Studies , Cognitive Dysfunction/diagnosis , Cohort Studies , Cognition/physiology , Aged, 80 and over , Middle Aged
10.
Clin Neuropsychol ; 38(2): 453-470, 2024 02.
Article in English | MEDLINE | ID: mdl-37349970

ABSTRACT

Objective: Process-based scores of episodic memory tests, such as the recency ratio (Rr), have been found to compare favourably to, or to be better than, most conventional or "traditional" scores employed to estimate memory ability in older individuals (Bock et al., 2021; Bruno et al., 2019). We explored the relationship between process-based scores and hippocampal volume in older adults, while comparing process-based to traditional story recall-derived scores, to examine potential differences in their predictive abilities. Methods: We analysed data from 355 participants extracted from the WRAP and WADRC databases, who were classified as cognitively unimpaired, or exhibited mild cognitive impairment (MCI) or dementia. Story Recall was measured with the Logical Memory Test (LMT) from the Weschler Memory Scale Revised, collected within twelve months of the magnetic resonance imaging scan. Linear regression analyses were conducted with left or right hippocampal volume (HV) as outcomes separately, and with Rr, Total ratio, Immediate LMT, or Delayed LMT scores as predictors, along with covariates. Results: Higher Rr and Tr scores significantly predicted lower left and right HV, while Tr showed the best model fit of all, as indicated by AIC. Traditional scores, Immediate LMT and Delayed LMT, were significantly associated with left and right HV, but were outperformed by both process-based scores for left HV, and by Tr for right HV. Conclusions: Current findings show the direct relationship between hippocampal volume and all the LMT scores examined here, and that process-based scores outperform traditional scores as markers of hippocampal volume.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Neuropsychological Tests , Cognitive Dysfunction/pathology , Hippocampus/pathology , Memory, Short-Term , Regression Analysis , Magnetic Resonance Imaging , Alzheimer Disease/psychology
11.
Neurobiol Aging ; 133: 87-98, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37925995

ABSTRACT

Neuropsychological measures sensitive to decline in the preclinical phase of Alzheimer's disease are needed. We previously demonstrated that higher amyloid-beta (Aß) assessed by positron emission tomography in adults without cognitive impairment was associated with recall of fewer proper names in Logical Memory story recall. The current study investigated the association between proper names and cerebrospinal fluid biomarkers (Aß42/40, phosphorylated tau181 [pTau181], neurofilament light) in 223 participants from the Wisconsin Registry for Alzheimer's Prevention. We assessed associations between biomarkers and delayed Logical Memory total score and proper names using binary logistic regressions. Sensitivity analyses used multinomial logistic regression and stratified biomarker groups. Lower Logical Memory total score and proper names scores from the most recent visit were associated with biomarker positivity. Relatedly, there was a 27% decreased risk of being classified Aß42/40+/pTau181+ for each additional proper name recalled. A linear mixed effects model found that longitudinal change in proper names recall was predicted by biomarker status. These results demonstrate a novel relationship between proper names and Alzheimer's disease-cerebrospinal fluid pathology.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , tau Proteins/cerebrospinal fluid , Longitudinal Studies , Disease Progression , Cognitive Dysfunction/psychology , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
12.
Brain Commun ; 5(6): fcad333, 2023.
Article in English | MEDLINE | ID: mdl-38107504

ABSTRACT

Cognitive decline in Alzheimer's disease and other dementias typically begins long before clinical impairment. Identifying people experiencing subclinical decline may facilitate earlier intervention. This study developed cognitive trajectory clusters using longitudinally based random slope and change point parameter estimates from a Preclinical Alzheimer's disease Cognitive Composite and examined how baseline and most recently available clinical/health-related characteristics, cognitive statuses and biomarkers for Alzheimer's disease and vascular disease varied across these cognitive clusters. Data were drawn from the Wisconsin Registry for Alzheimer's Prevention, a longitudinal cohort study of adults from late midlife, enriched for a parental history of Alzheimer's disease and without dementia at baseline. Participants who were cognitively unimpaired at the baseline visit with ≥3 cognitive visits were included in trajectory modelling (n = 1068). The following biomarker data were available for subsets: positron emission tomography amyloid (amyloid: n = 367; [11C]Pittsburgh compound B (PiB): global PiB distribution volume ratio); positron emission tomography tau (tau: n = 321; [18F]MK-6240: primary regions of interest meta-temporal composite); MRI neurodegeneration (neurodegeneration: n = 581; hippocampal volume and global brain atrophy); T2 fluid-attenuated inversion recovery MRI white matter ischaemic lesion volumes (vascular: white matter hyperintensities; n = 419); and plasma pTau217 (n = 165). Posterior median estimate person-level change points, slopes' pre- and post-change point and estimated outcome (intercepts) at change point for cognitive composite were extracted from Bayesian Bent-Line Regression modelling and used to characterize cognitive trajectory groups (K-means clustering). A common method was used to identify amyloid/tau/neurodegeneration/vascular biomarker thresholds. We compared demographics, last visit cognitive status, health-related factors and amyloid/tau/neurodegeneration/vascular biomarkers across the cognitive groups using ANOVA, Kruskal-Wallis, χ2, and Fisher's exact tests. Mean (standard deviation) baseline and last cognitive assessment ages were 58.4 (6.4) and 66.6 (6.6) years, respectively. Cluster analysis identified three cognitive trajectory groups representing steep, n = 77 (7.2%); intermediate, n = 446 (41.8%); and minimal, n = 545 (51.0%) cognitive decline. The steep decline group was older, had more females, APOE e4 carriers and mild cognitive impairment/dementia at last visit; it also showed worse self-reported general health-related and vascular risk factors and higher amyloid, tau, neurodegeneration and white matter hyperintensity positive proportions at last visit. Subtle cognitive decline was consistently evident in the steep decline group and was associated with generally worse health. In addition, cognitive trajectory groups differed on aetiology-informative biomarkers and risk factors, suggesting an intimate link between preclinical cognitive patterns and amyloid/tau/neurodegeneration/vascular biomarker differences in late middle-aged adults. The result explains some of the heterogeneity in cognitive performance within cognitively unimpaired late middle-aged adults.

13.
Neuroimage ; 284: 120436, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37931870

ABSTRACT

Persistent homology offers a powerful tool for extracting hidden topological signals from brain networks. It captures the evolution of topological structures across multiple scales, known as filtrations, thereby revealing topological features that persist over these scales. These features are summarized in persistence diagrams, and their dissimilarity is quantified using the Wasserstein distance. However, the Wasserstein distance does not follow a known distribution, posing challenges for the application of existing parametric statistical models. To tackle this issue, we introduce a unified topological inference framework centered on the Wasserstein distance. Our approach has no explicit model and distributional assumptions. The inference is performed in a completely data driven fashion. We apply this method to resting-state functional magnetic resonance images (rs-fMRI) of temporal lobe epilepsy patients collected from two different sites: the University of Wisconsin-Madison and the Medical College of Wisconsin. Importantly, our topological method is robust to variations due to sex and image acquisition, obviating the need to account for these variables as nuisance covariates. We successfully localize the brain regions that contribute the most to topological differences. A MATLAB package used for all analyses in this study is available at https://github.com/laplcebeltrami/PH-STAT.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Nerve Net/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Models, Statistical
14.
Epilepsy Behav ; 149: 109492, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951133

ABSTRACT

RATIONALE: Recent cross-sectional investigations have demonstrated an adverse impact of socioeconomic disadvantage on cognition and behavior in youth and adults with epilepsy. The goal of this study is to investigate the impact of disadvantage on prospective intellectual development in youth with epilepsy. METHOD: Participants were youth, aged 8-18 years, with recent onset epilepsy (n = 182) and healthy first-degree cousin controls (n = 106). The Wechsler Abbreviated Scale of Intelligence (WASI) was administered at baseline and 2 years later. The Neighborhood Atlas identified each family's Area Deprivation Index via state deciles and national percentiles. WASI data were analyzed by mixed group by time ANOVAs followed by regression analysis to identify other baseline predictors of time 2 outcomes. RESULTS: Youth with epilepsy demonstrated significant interactions between group and time for both verbal (F = 4.02, df = 1,215, p =.05) and nonverbal (F = 4.57, df = 1,215, p =.04) reasoning, demonstrating that disadvantage was associated with slower cognitive development compared to advantaged youth with epilepsy. Similar interactions were not observed for controls. CONCLUSIONS: In youth with new and recent onset epilepsies, neighborhood-level disadvantage is associated with a negative impact on the development of verbal and nonverbal reasoning skills.


Subject(s)
Epilepsy , Adult , Humans , Adolescent , Cross-Sectional Studies , Prospective Studies , Cognition , Neighborhood Characteristics
15.
Epilepsy Behav ; 148: 109471, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37866248

ABSTRACT

RATIONALE: The International Classification of Cognitive Disorders in Epilepsy (IC-CoDE) was recently introduced as a consensus-based, empirically-driven taxonomy of cognitive disorders in epilepsy and has been effectively applied to patients with temporal lobe epilepsy (TLE). The purpose of this study was to apply the IC-CoDE to patients with frontal lobe epilepsy (FLE) using national multicenter data. METHODS: Neuropsychological data of 455 patients with FLE aged 16 years or older were available across four US-based sites. First, we examined test-specific impairment rates across sites using two impairment thresholds (1.0 and 1.5 standard deviations below the normative mean). Following the proposed IC-CoDE guidelines, patterns of domain impairment were determined based on commonly used tests within five cognitive domains (language, memory, executive functioning, attention/processing speed, and visuospatial ability) to construct phenotypes. Impairment rates and distributions across phenotypes were then compared with those found in patients with TLE for which the IC-CoDE classification was initially validated. RESULTS: The highest rates of impairment were found among tests of naming, verbal fluency, speeded sequencing and set-shifting, and complex figure copy. The following IC-CoDE phenotype distributions were observed using the two different threshold cutoffs: 23-40% cognitively intact, 24-29% single domain impairment, 13-20% bi-domain impairment, and 18-33% generalized impairment. Language was the most common single domain impairment (68% for both thresholds) followed by attention and processing speed (15-18%). Overall, patients with FLE reported higher rates of cognitive impairment compared with patients with TLE. CONCLUSIONS: These results demonstrate the applicability of the IC-CoDE to epilepsy syndromes outside of TLE. Findings indicated generally stable and reproducible phenotypes across multiple epilepsy centers in the U.S. with diverse sample characteristics and varied neuropsychological test batteries. Findings also highlight opportunities for further refinement of the IC-CoDE guidelines as the application expands.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Epilepsy, Frontal Lobe , Epilepsy, Temporal Lobe , Humans , Epilepsy, Frontal Lobe/complications , Epilepsy, Frontal Lobe/diagnosis , Epilepsy, Frontal Lobe/psychology , Executive Function , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/psychology , Cognition Disorders/diagnosis , Cognition Disorders/etiology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Neuropsychological Tests , Cognition
16.
Epilepsia ; 64(12): 3331-3341, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37814399

ABSTRACT

OBJECTIVE: Patients with temporal lobe epilepsy (TLE) are often at a high risk for cognitive and psychiatric comorbidities. Several cognitive phenotypes have been identified in TLE, but it is unclear how phenotypes relate to psychiatric comorbidities, such as anxiety and depression. This observational study investigated the relationship between cognitive phenotypes and psychiatric symptomatology in TLE. METHODS: A total of 826 adults (age = 40.3, 55% female) with pharmacoresistant TLE completed a neuropsychological evaluation that included at least two measures from five cognitive domains to derive International Classification of Cognitive Disorders in Epilepsy (IC-CoDE) cognitive phenotypes (i.e., intact, single-domain impairment, bi-domain impairment, generalized impairment). Participants also completed screening measures for depression and anxiety. Psychiatric history and medication data were extracted from electronic health records. Multivariable proportional odds logistic regression models examined the relationship between IC-CoDE phenotypes and psychiatric variables after controlling for relevant covariates. RESULTS: Patients with elevated depressive symptoms had a greater odds of demonstrating increasingly worse cognitive phenotypes than patients without significant depressive symptomatology (odds ratio [OR] = 1.123-1.993, all corrected p's < .05). Number of psychotropic (OR = 1.584, p < .05) and anti-seizure medications (OR = 1.507, p < .001), use of anti-seizure medications with mood-worsening effects (OR = 1.748, p = .005), and history of a psychiatric diagnosis (OR = 1.928, p < .05) also increased the odds of a more severe cognitive phenotype, while anxiety symptoms were unrelated. SIGNIFICANCE: This study demonstrates that psychiatric factors are not only associated with function in specific cognitive domains but also with the pattern and extent of deficits across cognitive domains. Results suggest that depressive symptoms and medications are strongly related to cognitive phenotype in adults with TLE and support the inclusion of these factors as diagnostic modifiers for cognitive phenotypes in future work. Longitudinal studies that incorporate neuroimaging findings are warranted to further our understanding of the complex relationships between cognition, mood, and seizures and to determine whether non-pharmacologic treatment of mood symptoms alters cognitive phenotype.


Subject(s)
Epilepsy, Temporal Lobe , Adult , Humans , Female , Male , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/diagnosis , Anxiety/psychology , Anxiety Disorders/complications , Cognition , Neuropsychological Tests , Phenotype
17.
J Clin Exp Neuropsychol ; 45(8): 763-769, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37571873

ABSTRACT

BACKGROUND: Wordlist and story recall tests are routinely employed in clinical practice for dementia diagnosis. In this study, our aim was to establish how well-standard clinical metrics compared to process scores derived from wordlist and story recall tests in predicting biomarker determined Alzheimer's disease, as defined by CSF ptau/Aß42 ratio. METHODS: Data from 295 participants (mean age = 65 ± 9.) were drawn from the University of Wisconsin - Madison Alzheimer's Disease Research Center (ADRC) and Wisconsin Registry for Alzheimer's Prevention (WRAP). Rey's Auditory Verbal Learning Test (AVLT; wordlist) and Logical Memory Test (LMT; story) data were used. Bayesian linear regression analyses were carried out with CSF ptau/Aß42 ratio as outcome. Sensitivity analyses were carried out with logistic regressions to assess diagnosticity. RESULTS: LMT generally outperformed AVLT. Notably, the best predictors were primacy ratio, a process score indexing loss of information learned early during test administration, and recency ratio, which tracks loss of recently learned information. Sensitivity analyses confirmed this conclusion. CONCLUSIONS: Our study shows that story recall tests may be better than wordlist tests for detection of dementia, especially when employing process scores alongside conventional clinical scores.


Subject(s)
Alzheimer Disease , Humans , Middle Aged , Aged , Alzheimer Disease/diagnosis , Bayes Theorem , Biomarkers , Learning , Mental Recall
18.
Brain Commun ; 5(2): fcad095, 2023.
Article in English | MEDLINE | ID: mdl-37038499

ABSTRACT

The relationship between temporal lobe epilepsy and psychopathology has had a long and contentious history with diverse views regarding the presence, nature and severity of emotional-behavioural problems in this patient population. To address these controversies, we take a new person-centred approach through the application of unsupervised machine learning techniques to identify underlying latent groups or behavioural phenotypes. Addressed are the distinct psychopathological profiles, their linked frequency, patterns and severity and the disruptions in morphological and network properties that underlie the identified latent groups. A total of 114 patients and 83 controls from the Epilepsy Connectome Project were administered the Achenbach System of Empirically Based Assessment inventory from which six Diagnostic and Statistical Manual of Mental Disorders-oriented scales were analysed by unsupervised machine learning analytics to identify latent patient groups. Identified clusters were contrasted to controls as well as to each other in order to characterize their association with sociodemographic, clinical epilepsy and morphological and functional imaging network features. The concurrent validity of the behavioural phenotypes was examined through other measures of behaviour and quality of life. Patients overall exhibited significantly higher (abnormal) scores compared with controls. However, cluster analysis identified three latent groups: (i) unaffected, with no scale elevations compared with controls (Cluster 1, 37%); (ii) mild symptomatology characterized by significant elevations across several Diagnostic and Statistical Manual of Mental Disorders-oriented scales compared with controls (Cluster 2, 42%); and (iii) severe symptomatology with significant elevations across all scales compared with controls and the other temporal lobe epilepsy behaviour phenotype groups (Cluster 3, 21%). Concurrent validity of the behavioural phenotype grouping was demonstrated through identical stepwise links to abnormalities on independent measures including the National Institutes of Health Toolbox Emotion Battery and quality of life metrics. There were significant associations between cluster membership and sociodemographic (handedness and education), cognition (processing speed), clinical epilepsy (presence and lifetime number of tonic-clonic seizures) and neuroimaging characteristics (cortical volume and thickness and global graph theory metrics of morphology and resting-state functional MRI). Increasingly dispersed volumetric abnormalities and widespread disruptions in underlying network properties were associated with the most abnormal behavioural phenotype. Psychopathology in these patients is characterized by a series of discrete latent groups that harbour accompanying sociodemographic, clinical and neuroimaging correlates. The underlying neurobiological patterns suggest that the degree of psychopathology is linked to increasingly dispersed abnormal brain networks. Similar to cognition, machine learning approaches support a novel developing taxonomy of the comorbidities of epilepsy.

19.
Neurology ; 100(23): e2350-e2359, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37076308

ABSTRACT

BACKGROUND AND OBJECTIVES: Temporal lobe epilepsy (TLE) is the most common adult form of epilepsy and is associated with a high risk of cognitive deficits and depressed mood. However, little is known about the role of environmental factors on cognition and mood in TLE. This cross-sectional study examined the relationship between neighborhood deprivation and neuropsychological function in adults with TLE. METHODS: Neuropsychological data were obtained from a clinical registry of patients with TLE and included measures of intelligence, attention, processing speed, language, executive function, visuospatial skills, verbal/visual memory, depression, and anxiety. Home addresses were used to calculate the Area Deprivation Index (ADI) for each individual, which were separated into quintiles (i.e., quintile 1 = least disadvantaged and quintile 5 = most disadvantaged). Kruskal-Wallis tests compared quintile groups on cognitive domain scores and mood and anxiety scores. Multivariable regression models, with and without ADI, were estimated for overall cognitive phenotype and for mood and anxiety scores. RESULTS: A total of 800 patients (median age 38 years; 58% female) met all inclusion criteria. Effects of disadvantage (increasing ADI) were observed across nearly all measured cognitive domains and with significant increases in symptoms of depression and anxiety. Furthermore, patients in more disadvantaged ADI quintiles had increased odds of a worse cognitive phenotype (p = 0.013). Patients who self-identified as members of minoritized groups were overrepresented in the most disadvantaged ADI quintiles and were 2.91 (95% CI 1.87-4.54) times more likely to be in a severe cognitive phenotype than non-Hispanic White individuals (p < 0.001). However, accounting for ADI attenuated this relationship, suggesting neighborhood deprivation may account for some of the relationship between race/ethnicity and cognitive phenotype (ADI-adjusted proportional odds ratio 1.82, 95% CI 1.37-2.42). DISCUSSION: These findings highlight the importance of environmental factors and regional characteristics in neuropsychological studies of epilepsy. There are many potential mechanisms by which neighborhood disadvantage can adversely affect cognition (e.g., fewer educational opportunities, limited access to health care, food insecurity/poor nutrition, and greater medical comorbidities). Future research will seek to investigate these potential mechanisms and determine whether structural and functional alterations in the brain moderate the relationship between ADI and cognition.


Subject(s)
Epilepsy, Temporal Lobe , Humans , Female , Male , Epilepsy, Temporal Lobe/psychology , Cross-Sectional Studies , Executive Function , Cognition , Brain
20.
Epilepsia ; 64(6): 1663-1672, 2023 06.
Article in English | MEDLINE | ID: mdl-36965077

ABSTRACT

OBJECTIVE: This study was undertaken to characterize the relationship between neighborhood disadvantage and cognitive function as well as clinical, sociodemographic, and family factors in children with new onset idiopathic epilepsy and healthy controls. METHODS: Research participants were 288 children aged 8-18 years with recent onset epilepsy (CWE; n = 182; mean age = 12.2 ± 3.2 years), healthy first-degree cousin controls (HC; n = 106; mean age = 12.5 ± 3.0), and one biological or adopted parent per child (n = 279). All participants were administered a comprehensive neuropsychological battery (reasoning, language, memory, executive function, motor function, and academic achievement). Family residential addresses were entered into the Neighborhood Atlas to determine each family's Area Deprivation Index (ADI), a metric used to quantify income, education, employment, and housing quality. A combination of parametric and nonparametric (χ2 ) tests examined the effect of ADI by group (epilepsy and controls) across cognitive, academic, clinical, and family factors. RESULTS: Disadvantage (ADI) was equally distributed between groups (p = .63). For CWE, high disadvantage was associated with lower overall intellectual quotient (IQ; p = .04), visual naming/expressive language (p = .03), phonemic (letter) fluency (p < .01), passive inattention (omission errors; p = .03), delayed verbal recall (p = .04), and dominant fine motor dexterity and speed (p < .01). Cognitive status of the HC group did not differ by level of disadvantage (p = .40). CWE exhibited greater academic difficulties in comparison to HC (p < .001), which were exacerbated by disadvantage in CWE (p = .02) but not HC (p < .05). High disadvantage was associated with a threefold risk for academic challenges prior to epilepsy onset (odds ratio = 3.31, p = .024). SIGNIFICANCE: Socioeconomic hardship (increased neighborhood disadvantage) exerts a significant adverse impact on the cognitive and academic status of youth with new and recent onset epilepsies, an impact that needs to be incorporated into etiological models of the neurobehavioral comorbidities of epilepsy.


Subject(s)
Epilepsy , Child , Adolescent , Humans , Epilepsy/epidemiology , Comorbidity , Family , Executive Function , Cognition
SELECTION OF CITATIONS
SEARCH DETAIL