Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Exp Eye Res ; 244: 109941, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782177

ABSTRACT

Refractive errors remain a global health concern, as a large proportion of the world's population is myopic. Current ablative approaches are costly, not without risks, and not all patients are candidates for these procedures. Electromechanical reshaping (EMR) has been explored as a viable cost-effective modality to directly shape tissues, including cartilage. In this study, stromal collagen structure and fibril orientation was examined before and after EMR with second-harmonic generation microscopy (SHG), a nonlinear multiphoton imaging method that has previously been used to study native corneal collagen with high spatial resolution. EMR, using a milled metal contact lens and potentiostat, was performed on the corneas of five extracted rabbit globes. SHG was performed using a confocal microscopy system and all images underwent collagen fibril orientation analysis. The collagen SHG signal in controls is uniform and is similarly seen in samples treated with pulsed potential, while continuous EMR specimens have reduced, nonhomogeneous signal. Collagen fibril orientation in native tissue demonstrates a broad distribution with suggestion of another peak evolving, while with EMR treated eyes a bimodal characteristic becomes readily evident. Pulsed EMR may be a means to correct refractive errors, as when comparing its SHG signal to negative control, preservation of collagen structures with little to no damage is observed. From collagen fiber orientation analysis, it can be inferred that simple DC application alters the structure of collagen. Future studies will involve histological assessment of these layers and multi-modal imaging analysis of dosimetry.


Subject(s)
Collagen , Microscopy, Confocal , Second Harmonic Generation Microscopy , Animals , Rabbits , Second Harmonic Generation Microscopy/methods , Collagen/metabolism , Corneal Stroma/metabolism , Cornea
2.
J Mater Chem B ; 2(46): 8131-8141, 2014 Dec 14.
Article in English | MEDLINE | ID: mdl-25530855

ABSTRACT

The avascular corneal epithelium plays an important role in maintaining normal vision and protecting the corneal interior from environmental infections. Delayed recovery of ocular wounds caused by trauma or refractive surgery strengthens the need to accelerate corneal wound healing and better restore the ocular surface. To address this need, we fused elastin-like polypeptide (ELP) based nanoparticles SI with a model mitogenic protein called lacritin. Lacritin fused at the N-terminus of the SI diblock copolymer is called LSI. This LSI fusion protein undergoes thermo-responsive assembly of nanoparticles at physiologically relevant temperatures. In comparison to ELP nanoparticles without lacritin, LSI showed potent signs of lacritin specific effects on a human corneal epithelial cell line (HCE-T), which included enhancement of cellular uptake, calcium-mediated signaling, and closure of a scratch. In vivo, the corneas of non-obese diabetic mice (NOD) were found to be highly responsive to LSI. Fluorescein imaging and corneal histology suggested that topical administration of LSI onto the ocular surface significantly promoted corneal wound healing and epithelial integrity compared to mice treated with or without plain ELP. Most interestingly, it appears that ELP-mediated assembly of LSI is essential to produce this potent activity. This was confirmed by comparison to a control lacritin ELP fusion called LS96, which does not undergo thermally-mediated assembly at relevant temperatures. In summary, fusion of a mitogenic protein to ELP nanoparticles appears to be a promising new strategy to bioengineer more potent biopharmaceuticals with potential applications in corneal wound healing.

SELECTION OF CITATIONS
SEARCH DETAIL