Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Infect ; 89(5): 106265, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39245152

ABSTRACT

OBJECTIVES: Integrating pathogen genomic surveillance with bioinformatics can enhance public health responses by identifying risk and guiding interventions. This study focusses on the two predominant Campylobacter species, which are commonly found in the gut of birds and mammals and often infect humans via contaminated food. Rising incidence and antimicrobial resistance (AMR) are a global concern, and there is an urgent need to quantify the main routes to human infection. METHODS: During routine US national surveillance (2009-2019), 8856 Campylobacter genomes from human infections and 16,703 from possible sources were sequenced. Using machine learning and probabilistic models, we target genetic variation associated with host adaptation to attribute the source of human infections and estimate the importance of different disease reservoirs. RESULTS: Poultry was identified as the primary source of human infections, responsible for an estimated 68% of cases, followed by cattle (28%), and only a small contribution from wild birds (3%) and pork sources (1%). There was also evidence of an increase in multidrug resistance, particularly among isolates attributed to chickens. CONCLUSIONS: National surveillance and source attribution can guide policy, and our study suggests that interventions targeting poultry will yield the greatest reductions in campylobacteriosis and spread of AMR in the US. DATA AVAILABILITY: All sequence reads were uploaded and shared on NCBI's Sequence Read Archive (SRA) associated with BioProjects; PRJNA239251 (CDC / PulseNet surveillance), PRJNA287430 (FSIS surveillance), PRJNA292668 & PRJNA292664 (NARMS) and PRJNA258022 (FDA surveillance). Publicly available genomes, including reference genomes and isolates sampled worldwide from wild birds are associated with BioProject accessions: PRJNA176480, PRJNA177352, PRJNA342755, PRJNA345429, PRJNA312235, PRJNA415188, PRJNA524300, PRJNA528879, PRJNA529798, PRJNA575343, PRJNA524315 and PRJNA689604. Contiguous assemblies of all genome sequences compared are available at Mendeley data (assembled C. coli genomes doi: 10.17632/gxswjvxyh3.1; assembled C. jejuni genomes doi: 10.17632/6ngsz3dtbd.1) and individual project and accession numbers can be found in Supplementary tables S1 and S2, which also includes pubMLST identifiers for assembled genomes. Figshare (10.6084/m9.figshare.20279928). Interactive phylogenies are hosted on microreact separately for C. jejuni (https://microreact.org/project/pascoe-us-cjejuni) and C. coli (https://microreact.org/project/pascoe-us-ccoli).

2.
Curr Biol ; 34(17): 3955-3965.e4, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39142288

ABSTRACT

Humans are radically altering global ecology, and one of the most apparent human-induced effects is urbanization, where high-density human habitats disrupt long-established ecotones. Changes to these transitional areas between organisms, especially enhanced contact among humans and wild animals, provide new opportunities for the spread of zoonotic pathogens. This poses a serious threat to global public health, but little is known about how habitat disruption impacts cross-species pathogen spread. Here, we investigated variation in the zoonotic enteric pathogen Campylobacter jejuni. The ubiquity of C. jejuni in wild bird gut microbiomes makes it an ideal organism for understanding how host behavior and ecology influence pathogen transition and spread. We analyzed 700 C. jejuni isolate genomes from 30 bird species in eight countries using a scalable generalized linear model approach. Comparing multiple behavioral and ecological traits showed that proximity to human habitation promotes lineage diversity and is associated with antimicrobial-resistant (AMR) strains in natural populations. Specifically, wild birds from urban areas harbored up to three times more C. jejuni genotypes and AMR genes. This study provides novel methodology and much-needed quantitative evidence linking urbanization to gene pool spread and zoonoses.


Subject(s)
Birds , Campylobacter jejuni , Gastrointestinal Microbiome , Animals , Campylobacter jejuni/genetics , Campylobacter jejuni/physiology , Campylobacter jejuni/isolation & purification , Birds/microbiology , Humans , Animals, Wild/microbiology , Drug Resistance, Bacterial/genetics , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Anti-Bacterial Agents/pharmacology , Urbanization , Zoonoses/microbiology , Ecosystem , Bird Diseases/microbiology , Microbiota
3.
NPJ Vaccines ; 9(1): 105, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866805

ABSTRACT

Campylobacter is a leading cause of food-borne gastroenteritis worldwide, linked to the consumption of contaminated poultry meat. Targeting this pathogen at source, vaccines for poultry can provide short-term caecal reductions in Campylobacter numbers in the chicken intestine. However, this approach is unlikely to reduce Campylobacter in the food chain or human incidence. This is likely as vaccines typically target only a subset of the high genomic strain diversity circulating among chicken flocks, and rapid evolution diminishes vaccine efficacy over time. To address this, we used a genomic approach to develop a whole-cell autogenous vaccine targeting isolates harbouring genes linked to survival outside of the host. We hyper-immunised a whole major UK breeder farm to passively target offspring colonisation using maternally-derived antibody. Monitoring progeny, broiler flocks revealed a near-complete shift in the post-vaccination Campylobacter population with an ~50% reduction in isolates harbouring extra-intestinal survival genes and a significant reduction of Campylobacter cells surviving on the surface of meat. Based on these findings, we developed a logistic regression model that predicted that vaccine efficacy could be extended to target 65% of a population of clinically relevant strains. Immuno-manipulation of poultry microbiomes towards less harmful commensal isolates by competitive exclusion, has major potential for reducing pathogens in the food production chain.

4.
mBio ; 15(6): e0058124, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38683013

ABSTRACT

Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens Campylobacter jejuni and C. coli that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with C. coli that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria Campylobacter, an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.


Subject(s)
Campylobacter coli , Campylobacter jejuni , Epistasis, Genetic , Gene Transfer, Horizontal , Genome, Bacterial , Recombination, Genetic , Campylobacter jejuni/genetics , Campylobacter coli/genetics , Evolution, Molecular , Adaptation, Physiological/genetics , Adaptation, Biological/genetics
5.
Microb Genom ; 9(10)2023 10.
Article in English | MEDLINE | ID: mdl-37850975

ABSTRACT

Listeria monocytogenes is an opportunistic food-borne bacterium that is capable of infecting humans with high rates of hospitalization and mortality. Natural populations are genotypically and phenotypically variable, with some lineages being responsible for most human infections. The success of L. monocytogenes is linked to its capacity to persist on food and in the environment. Biofilms are an important feature that allow these bacteria to persist and infect humans, so understanding the genetic basis of biofilm formation is key to understanding transmission. We sought to investigate the biofilm-forming ability of L. monocytogenes by identifying genetic variation that underlies biofilm formation in natural populations using genome-wide association studies (GWAS). Changes in gene expression of specific strains during biofilm formation were then investigated using RNA sequencing (RNA-seq). Genetic variation associated with enhanced biofilm formation was identified in 273 genes by GWAS and differential expression in 220 genes by RNA-seq. Statistical analyses show that the number of overlapping genes flagged by either type of experiment is less than expected by random sampling. This novel finding is consistent with an evolutionary scenario where rapid adaptation is driven by variation in gene expression of pioneer genes, and this is followed by slower adaptation driven by nucleotide changes within the core genome.


Subject(s)
Listeria monocytogenes , Listeria , Humans , Listeria/genetics , Genome-Wide Association Study , Biofilms , Listeria monocytogenes/genetics
6.
Cancer Metab ; 11(1): 18, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858256

ABSTRACT

BACKGROUND: To support proliferation and survival within a challenging microenvironment, cancer cells must reprogramme their metabolism. As such, targeting cancer cell metabolism is a promising therapeutic avenue. However, identifying tractable nodes of metabolic vulnerability in cancer cells is challenging due to their metabolic plasticity. Identification of effective treatment combinations to counter this is an active area of research. Aspirin has a well-established role in cancer prevention, particularly in colorectal cancer (CRC), although the mechanisms are not fully understood. METHODS: We generated a model to investigate the impact of long-term (52 weeks) aspirin exposure on CRC cells, which has allowed us comprehensively characterise the metabolic impact of long-term aspirin exposure (2-4mM for 52 weeks) using proteomics, Seahorse Extracellular Flux Analysis and Stable Isotope Labelling (SIL). Using this information, we were able to identify nodes of metabolic vulnerability for further targeting, investigating the impact of combining aspirin with metabolic inhibitors in vitro and in vivo. RESULTS: We show that aspirin regulates several enzymes and transporters of central carbon metabolism and results in a reduction in glutaminolysis and a concomitant increase in glucose metabolism, demonstrating reprogramming of nutrient utilisation. We show that aspirin causes likely compensatory changes that render the cells sensitive to the glutaminase 1 (GLS1) inhibitor-CB-839. Of note given the clinical interest, treatment with CB-839 alone had little effect on CRC cell growth or survival. However, in combination with aspirin, CB-839 inhibited CRC cell proliferation and induced apoptosis in vitro and, importantly, reduced crypt proliferation in Apcfl/fl mice in vivo. CONCLUSIONS: Together, these results show that aspirin leads to significant metabolic reprogramming in colorectal cancer cells and raises the possibility that aspirin could significantly increase the efficacy of metabolic cancer therapies in CRC.

9.
Elife ; 112022 02 22.
Article in English | MEDLINE | ID: mdl-35191377

ABSTRACT

Horizontal gene transfer (HGT) can allow traits that have evolved in one bacterial species to transfer to another. This has potential to rapidly promote new adaptive trajectories such as zoonotic transfer or antimicrobial resistance. However, for this to occur requires gaps to align in barriers to recombination within a given time frame. Chief among these barriers is the physical separation of species with distinct ecologies in separate niches. Within the genus Campylobacter, there are species with divergent ecologies, from rarely isolated single-host specialists to multihost generalist species that are among the most common global causes of human bacterial gastroenteritis. Here, by characterizing these contrasting ecologies, we can quantify HGT among sympatric and allopatric species in natural populations. Analyzing recipient and donor population ancestry among genomes from 30 Campylobacter species, we show that cohabitation in the same host can lead to a six-fold increase in HGT between species. This accounts for up to 30% of all SNPs within a given species and identifies highly recombinogenic genes with functions including host adaptation and antimicrobial resistance. As described in some animal and plant species, ecological factors are a major evolutionary force for speciation in bacteria and changes to the host landscape can promote partial convergence of distinct species through HGT.


Subject(s)
Anti-Infective Agents , Campylobacter , Animals , Bacteria/genetics , Biological Evolution , Campylobacter/genetics , Gene Transfer, Horizontal , Phylogeny
10.
medRxiv ; 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35194620

ABSTRACT

BACKGROUND: The structural environment of urban slums, including physical, demographic and socioeconomic attributes, renders inhabitants more vulnerable to SARS-CoV-2 infection. Yet, little is known about the specific determinants that contribute to high transmission within these communities. METHODS AND FINDINGS: We performed a serosurvey of an established cohort of 2,035 urban slum residents from the city of Salvador, Brazil between November 2020 and February 2021, following the first COVID-19 pandemic wave in the country. We identified high SARS-CoV-2 seroprevalence (46.4%, 95% confidence interval [CI] 44.3-48.6%), particularly among female residents (48.7% [95% CI 45.9-51.6%] vs. 43.2% [95% CI 39.8-46.6%] among male residents), and among children (56.5% [95% CI 52.3-60.5%] vs. 42.4% [95% CI 39.9-45.0%] among adults). In multivariable models that accounted for household-level clustering, the odds ratio for SARS-CoV-2 seropositivity among children was 1.96 (95% CI 1.42-2.72) compared to adults aged 30-44 years. Adults residing in households with children were more likely to be seropositive; this effect was particularly prominent among individuals with age 30-44 and 60 years or more. Women living below the poverty threshold (daily per capita household income <$1.25) and those who were unemployed were more likely to be seropositive. CONCLUSIONS: During a single wave of the COVID-19 pandemic, cumulative incidence as assessed by serology approached 50% in a Brazilian urban slum population. In contrast to observations from industrialized countries, SARS-CoV-2 incidence was highest among children, as well as women living in extreme poverty. These findings emphasize the need for targeted interventions that provide safe environments for children and mitigate the structural risks posed by crowding and poverty for the most vulnerable residents of urban slum communities.

11.
Sci Rep ; 11(1): 17758, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34493784

ABSTRACT

DNA viruses can exploit host cellular epigenetic processes to their advantage; however, the epigenome status of most DNA viruses remains undetermined. Third generation sequencing technologies allow for the identification of modified nucleotides from sequencing experiments without specialized sample preparation, permitting the detection of non-canonical epigenetic modifications that may distinguish viral nucleic acid from that of their host, thus identifying attractive targets for advanced therapeutics and diagnostics. We present a novel nanopore de novo assembly pipeline used to assemble a misidentified Camelpox vaccine. Two confirmed deletions of this vaccine strain in comparison to the closely related Vaccinia virus strain modified vaccinia Ankara make it one of the smallest non-vector derived orthopoxvirus genomes to be reported. Annotation of the assembly revealed a previously unreported signal peptide at the start of protein A38 and several predicted signal peptides that were found to differ from those previously described. Putative epigenetic modifications around various motifs have been identified and the assembly confirmed previous work showing the vaccine genome to most closely resemble that of Vaccinia virus strain Modified Vaccinia Ankara. The pipeline may be used for other DNA viruses, increasing the understanding of DNA virus evolution, virulence, host preference, and epigenomics.


Subject(s)
Defective Viruses/genetics , Epigenome , Genome, Viral , Nanopore Sequencing , Orthopoxvirus/genetics , Protein Sorting Signals/genetics , Sequence Analysis, DNA/methods , Vaccinia virus/genetics , Viral Proteins/genetics , Viral Vaccines , Amino Acid Motifs , Amino Acid Sequence , DNA Viruses/genetics , Molecular Sequence Annotation , Orthopoxvirus/immunology , Sequence Deletion , Software , Species Specificity , United Arab Emirates , Vaccines, Attenuated
12.
PLoS Genet ; 17(9): e1009829, 2021 09.
Article in English | MEDLINE | ID: mdl-34582435

ABSTRACT

Measuring molecular evolution in bacteria typically requires estimation of the rate at which nucleotide changes accumulate in strains sampled at different times that share a common ancestor. This approach has been useful for dating ecological and evolutionary events that coincide with the emergence of important lineages, such as outbreak strains and obligate human pathogens. However, in multi-host (niche) transmission scenarios, where the pathogen is essentially an opportunistic environmental organism, sampling is often sporadic and rarely reflects the overall population, particularly when concentrated on clinical isolates. This means that approaches that assume recent common ancestry are not applicable. Here we present a new approach to estimate the molecular clock rate in Campylobacter that draws on the popular probability conundrum known as the 'birthday problem'. Using large genomic datasets and comparative genomic approaches, we use isolate pairs that share recent common ancestry to estimate the rate of nucleotide change for the population. Identifying synonymous and non-synonymous nucleotide changes, both within and outside of recombined regions of the genome, we quantify clock-like diversification to estimate synonymous rates of nucleotide change for the common pathogenic bacteria Campylobacter coli (2.4 x 10-6 s/s/y) and Campylobacter jejuni (3.4 x 10-6 s/s/y). Finally, using estimated total rates of nucleotide change, we infer the number of effective lineages within the sample time frame-analogous to a shared birthday-and assess the rate of turnover of lineages in our sample set over short evolutionary timescales. This provides a generalizable approach to calibrating rates in populations of environmental bacteria and shows that multiple lineages are maintained, implying that large-scale clonal sweeps may take hundreds of years or more in these species.


Subject(s)
Campylobacter/genetics , Evolution, Molecular , Campylobacter/classification , Genes, Bacterial , Genetic Variation , Phylogeny , Species Specificity
14.
Nat Commun ; 12(1): 765, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536414

ABSTRACT

Chickens are the most common birds on Earth and colibacillosis is among the most common diseases affecting them. This major threat to animal welfare and safe sustainable food production is difficult to combat because the etiological agent, avian pathogenic Escherichia coli (APEC), emerges from ubiquitous commensal gut bacteria, with no single virulence gene present in all disease-causing isolates. Here, we address the underlying evolutionary mechanisms of extraintestinal spread and systemic infection in poultry. Combining population scale comparative genomics and pangenome-wide association studies, we compare E. coli from commensal carriage and systemic infections. We identify phylogroup-specific and species-wide genetic elements that are enriched in APEC, including pathogenicity-associated variation in 143 genes that have diverse functions, including genes involved in metabolism, lipopolysaccharide synthesis, heat shock response, antimicrobial resistance and toxicity. We find that horizontal gene transfer spreads pathogenicity elements, allowing divergent clones to cause infection. Finally, a Random Forest model prediction of disease status (carriage vs. disease) identifies pathogenic strains in the emergent ST-117 poultry-associated lineage with 73% accuracy, demonstrating the potential for early identification of emergent APEC in healthy flocks.


Subject(s)
Escherichia coli Infections/prevention & control , Escherichia coli/genetics , Evolution, Molecular , Genome, Bacterial/genetics , Poultry Diseases/prevention & control , Animals , Chickens , Escherichia coli/classification , Escherichia coli/pathogenicity , Escherichia coli Infections/diagnosis , Escherichia coli Infections/microbiology , Genes, Bacterial , Genetic Variation , Genome-Wide Association Study/methods , Genotype , Humans , Phylogeny , Poultry Diseases/diagnosis , Poultry Diseases/microbiology , Virulence/genetics
15.
ISME J ; 15(1): 78-92, 2021 01.
Article in English | MEDLINE | ID: mdl-32879462

ABSTRACT

Helicobacter pylori is a common component of the human stomach microbiota, possibly dating back to the speciation of Homo sapiens. A history of pathogen evolution in allopatry has led to the development of genetically distinct H. pylori subpopulations, associated with different human populations, and more recent admixture among H. pylori subpopulations can provide information about human migrations. However, little is known about the degree to which some H. pylori genes are conserved in the face of admixture, potentially indicating host adaptation, or how virulence genes spread among different populations. We analyzed H. pylori genomes from 14 countries in the Americas, strains from the Iberian Peninsula, and public genomes from Europe, Africa, and Asia, to investigate how admixture varies across different regions and gene families. Whole-genome analyses of 723 H. pylori strains from around the world showed evidence of frequent admixture in the American strains with a complex mosaic of contributions from H. pylori populations originating in the Americas as well as other continents. Despite the complex admixture, distinctive genomic fingerprints were identified for each region, revealing novel American H. pylori subpopulations. A pan-genome Fst analysis showed that variation in virulence genes had the strongest fixation in America, compared with non-American populations, and that much of the variation constituted non-synonymous substitutions in functional domains. Network analyses suggest that these virulence genes have followed unique evolutionary paths in the American populations, spreading into different genetic backgrounds, potentially contributing to the high risk of gastric cancer in the region.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Americas , Europe , Genetic Variation , Genome, Bacterial , Helicobacter pylori/genetics , Humans , United States , Virulence/genetics
16.
Clin Infect Dis ; 73(11): e4428-e4432, 2021 12 06.
Article in English | MEDLINE | ID: mdl-32645144

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a large risk to healthcare personnel (HCP). Quantifying the risk of coronavirus infection associated with workplace activities is an urgent need. METHODS: We assessed the association of worker characteristics, occupational roles and behaviors, and participation in procedures with the risk of endemic coronavirus infection among HCP who participated in the Respiratory Protection Effectiveness Clinical Trial (ResPECT), a cluster randomized trial to assess personal protective equipment to prevent respiratory infections and illness conducted from 2011 to 2016. RESULTS: Among 4689 HCP seasons, we detected coronavirus infection in 387 (8%). HCP who participated in an aerosol-generating procedure (AGP) at least once during the viral respiratory season were 105% (95% confidence interval, 21%-240%) more likely to be diagnosed with a laboratory-confirmed coronavirus infection. Younger individuals, those who saw pediatric patients, and those with household members <5 years of age were at increased risk of coronavirus infection. CONCLUSIONS: Our analysis suggests that the risk of HCP becoming infected with an endemic coronavirus increases approximately 2-fold with exposures to AGPs. Our findings may be relevant to the coronavirus disease 2019 (COVID-19) pandemic; however, SARS-CoV-2, the virus that causes COVID-19, may differ from endemic coronaviruses in important ways. CLINICAL TRIALS REGISTRATION: NCT01249625.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Child , Delivery of Health Care , Humans , Risk Factors , SARS-CoV-2
17.
Sci Rep ; 10(1): 20638, 2020 11 26.
Article in English | MEDLINE | ID: mdl-33244119

ABSTRACT

The "UV sunscreen" compounds, the mycosporine-like amino acids (MAAs) are widely reported in cyanobacteria and are known to be induced under ultra-violet (UV) light. However, the impact of far red (FR) light on MAA biosynthesis has not been studied. We report results from two experiments measuring transcriptional regulation of MAA and aromatic amino acid pathways in the filamentous cyanobacterium Chlorogloeopsis fritschii PCC 6912. The first experiment, comparing UV with white light, shows the expected upregulation of the characteristic MAA mys gene cluster. The second experiment, comparing FR with white light, shows that three genes of the four mys gene cluster encoding up to mycosporine-glycine are also upregulated under FR light. This is a new discovery. We observed corresponding increases in MAAs under FR light using HPLC analysis. The tryptophan pathway was upregulated under UV, with no change under FR. The tyrosine and phenylalanine pathways were unaltered under both conditions. However, nitrate ABC transporter genes were upregulated under UV and FR light indicating increased nitrogen requirement under both light conditions. The discovery that MAAs are upregulated under FR light supports MAAs playing a role in photon dissipation and thermoregulation with a possible role in contributing to Earth surface temperature regulation.


Subject(s)
Amino Acids/genetics , Cyanobacteria/genetics , Transcriptome/genetics , Cyclohexanols , Glycine/analogs & derivatives , Glycine/genetics , Light , Multigene Family/genetics , Nitrogen/metabolism , Sunscreening Agents/metabolism , Ultraviolet Rays , Up-Regulation/genetics
18.
Vaccine ; 38(46): 7213-7216, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33012602

ABSTRACT

To rapidly evaluate the safety and efficacy of COVID-19 vaccine candidates, prioritizing vaccine trial sites in areas with high expected disease incidence can speed endpoint accrual and shorten trial duration. Mathematical and statistical forecast models can inform the process of site selection, integrating available data sources and facilitating comparisons across locations. We recommend the use of ensemble forecast modeling - combining projections from independent modeling groups - to guide investigators identifying suitable sites for COVID-19 vaccine efficacy trials. We describe an appropriate structure for this process, including minimum requirements, suggested output, and a user-friendly tool for displaying results. Importantly, we advise that this process be repeated regularly throughout the trial, to inform decisions about enrolling new participants at existing sites with waning incidence versus adding entirely new sites. These types of data-driven models can support the implementation of flexible efficacy trials tailored to the outbreak setting.


Subject(s)
Betacoronavirus/immunology , Clinical Trials as Topic/methods , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/adverse effects , Viral Vaccines/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Forecasting/methods , Humans , Models, Theoretical , SARS-CoV-2
19.
PLoS Negl Trop Dis ; 14(8): e0008533, 2020 08.
Article in English | MEDLINE | ID: mdl-32776937

ABSTRACT

Campylobacter is the leading bacterial cause of gastroenteritis worldwide and its incidence is especially high in low- and middle-income countries (LMIC). Disease epidemiology in LMICs is different compared to high income countries like the USA or in Europe. Children in LMICs commonly have repeated and chronic infections even in the absence of symptoms, which can lead to deficits in early childhood development. In this study, we sequenced and characterized C. jejuni (n = 62) from a longitudinal cohort study of children under the age of 5 with and without diarrheal symptoms, and contextualized them within a global C. jejuni genome collection. Epidemiological differences in disease presentation were reflected in the genomes, specifically by the absence of some of the most common global disease-causing lineages. As in many other countries, poultry-associated strains were likely a major source of human infection but almost half of local disease cases (15 of 31) were attributable to genotypes that are rare outside of Peru. Asymptomatic infection was not limited to a single (or few) human adapted lineages but resulted from phylogenetically divergent strains suggesting an important role for host factors in the cryptic epidemiology of campylobacteriosis in LMICs.


Subject(s)
Asymptomatic Infections , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Animals , Campylobacter Infections/diagnosis , Campylobacter Infections/physiopathology , Campylobacter jejuni/classification , Child, Preschool , Cohort Studies , Diarrhea/epidemiology , Genomics , Genotype , Host-Parasite Interactions , Humans , Infant , Infant, Newborn , Longitudinal Studies , Molecular Typing , Multilocus Sequence Typing , Peru/epidemiology , Phylogeny , Poultry/microbiology
20.
Appl Environ Microbiol ; 86(20)2020 10 01.
Article in English | MEDLINE | ID: mdl-32801179

ABSTRACT

Staphylococcus pseudintermedius causes opportunistic infections in dogs. It also has significant zoonotic potential, with the emergence of multidrug resistance leading to difficulty treating both animal and human infections. Manuka honey has previously been reported to inhibit many bacterial pathogens, including methicillin-resistant Staphylococcus aureus, and is successfully utilized in both clinical and veterinary practice. Here, we evaluated the ability of manuka honey to inhibit strains of S. pseudintermedius grown alone and in combination with antibiotics, as well as its capacity to modulate virulence within multiple S. pseudintermedius isolates. All 18 of the genetically diverse S. pseudintermedius strains sequenced and tested were inhibited by ≤12% (wt/vol) medical-grade manuka honey, although tolerance to five clinically relevant antibiotics was observed. The susceptibility of the isolates to four of these antibiotics was significantly increased (P ≤ 0.05) when combined with sublethal concentrations of honey, although sensitivity to oxacillin was decreased. Virulence factor (DNase, protease, and hemolysin) activity was also significantly reduced (P ≤ 0.05) in over half of isolates when cultured with sublethal concentrations of honey (13, 9, and 10 isolates, respectively). These findings highlight the potential for manuka honey to be utilized against S. pseudintermedius infections.IMPORTANCEStaphylococcus pseudintermedius is an important member of the skin microbial community in animals and can cause opportunistic infections in both pets and their owners. The high incidence of antimicrobial resistance in S. pseudintermedius highlights that this opportunistic zoonotic pathogen can cause infections which require prolonged and intensive treatment to resolve. Manuka honey has proven efficacy against many bacterial pathogens and is an accepted topical treatment for infections in both veterinary and clinical practice, and so it is a particularly appropriate antimicrobial for use with zoonotic pathogens such as S. pseudintermedius Here, we demonstrate that not only is manuka honey highly potent against novel multidrug-resistant S. pseudintermedius isolates, it also acts synergistically with clinically relevant antibiotics. In addition, manuka honey modulates S. pseudintermedius virulence activity, even at subinhibitory concentrations. In a clinical setting, these attributes may assist in controlling infection, allowing a more rapid resolution and reducing antibiotic use.


Subject(s)
Anti-Bacterial Agents/pharmacology , Honey/analysis , Staphylococcus/drug effects , Anti-Bacterial Agents/analysis , Staphylococcus/genetics , Staphylococcus/pathogenicity , Staphylococcus/physiology , Virulence/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL