Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters








Publication year range
1.
Inorg Chem ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382204

ABSTRACT

The potential to produce high-purity C2H4 has made ethylene-selective adsorbents for ethane (C2H6)/ethylene (C2H4) gas mixture separation appealing as viable substitutes for traditional cryogenic distillation. In this aspect, porous organic polymers (POPs) are anticipated to become the next-generation potential adsorbent due to their easily customizable functions and functional sites suitable for gas separation. This article reports the selective C2H4 adsorption over C2H6 using microporous copper(I)-coordinated POP (Cu@Di-POP) via fine-tuning of the π complexation and pore size. The specially designed adsorbent has the ideal pore size and coordinated Cu(I) ions to form π-complexation with C2H4 molecules, which enabled it to adsorb C2H4 (at 1 bar, 24.9, 18.9, and 13.4 cm3 g-1 at 273, 298, and 323 K, respectively) while significantly reducing C2H6 adsorption (at 1 bar, 16.9, 12.7, and 8.8 cm3 g-1 at 273, 298, and 323 K, respectively). At 1 bar, Cu@Di-POP exhibited IAST selectivities of 6.09, 5.60, and 4.13 for C2H4/C2H6 at 273, 298, and 323 K, respectively, suggesting its C2H4 selective behavior, which was further confirmed from the experimental breakthrough measurement. Furthermore, the computational studies carried out with density functional theory highlighted an enhanced charge distribution leading to dπ-pπ conjugation between C2H4 π-electrons and Cu d-electrons, thereby showing a relatively higher interaction energy of -37.23 kcal/mol with C2H4 as compared to -16.06 kcal/mol with C2H6 gas molecules.

2.
ChemSusChem ; : e202401404, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39166722

ABSTRACT

Diamine-functionalized metal-organic frameworks (MOFs) based on Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobihyenyl-3,3'-dicarboxylate) have been frequently reported as promising CO2 adsorbents due to their characteristic step-shaped adsorption behavior. However, high CO2 desorption temperatures for diamine-Mg2(dobpdc)-based adsorbents led to gradual diamine loss while the existence of an exotic CO2 adsorption mode remains experimentally unanswered. Herein, we present CO2 adsorbents obtained by functionalizing Mn2(dobpdc) with a diaminopropane series. These adsorbents offer low regeneration energies, allowing CO2 desorption at lower temperatures than the reported Mg-based analogs. Our first-principles density functional theory calculations showed that the binding strength between the diamine and Mn ions in Mn2(dobpdc) was stronger than that between the diamine and Mg ions in Mg2(dobpdc), preventing diamine loss even at high temperatures and enabling efficient regeneration. Additionally, the computational and experimental data demonstrated that primary-tertiary diamine-functionalized MOFs exhibit one-channel flipped adsorption structures that have not been experimentally revealed. Our findings provide insights into the role of metal ions in diamine loss for the future development of efficient amine-based CO2 adsorbents.

3.
ACS Appl Mater Interfaces ; 16(34): 45242-45251, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39158167

ABSTRACT

The film-forming capability of the host plays a crucial role in effectively forming a light-emitting layer through a solution process in organic light-emitting diodes (OLEDs). In this study, we synthesized two side-chain polymer hosts, PCz-DBT and P2Cz-DBT, consisting of carbazole and dibenzothiophene. The synthesis was carried out through radical polymerization using styrene-based host monomers. Their photophysical characteristics and molecular energy levels are similar to those of the reference small molecule hosts, namely, Cz-DBT and 2Cz-DBT. However, compared to the small-molecule hosts Cz-DBT and 2Cz-DBT, the two polymer hosts showed high thermal stability and good film-forming properties in the neat and host-emitter blend films. Specifically, bluish-green multiple-resonance (MR) thermally activated delayed fluorescence (TADF) OLEDs, fabricated via solution processing with an emissive layer based on P2Cz-DBT, exhibited remarkable performance. These devices achieved a maximum external quantum efficiency of 17.4% without utilizing a hole transport layer. This polymer host design strategy is considered to significantly contribute to enhancing the performance of TADF-OLEDs fabricated through solution processing.

4.
J Am Chem Soc ; 146(28): 19337-19349, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953459

ABSTRACT

Direct air capture (DAC) shows considerable promise for the effective removal of CO2; however, materials applicable to DAC are lacking. Among metal-organic framework (MOF) adsorbents, diamine-Mg2(dobpdc) (dobpdc4- = 4,4-dioxidobiphenyl-3,3'-dicarboxylate) effectively removes low-pressure CO2, but the synthesis of the organic ligand requires high temperature, high pressure, and a toxic solvent. Besides, it is necessary to isolate the ligand for utilization in the synthesis of the framework. In this study, we synthesized a new variant of extended MOF-74-type frameworks, M2(hob) (M = Mg2+, Co2+, Ni2+, and Zn2+; hob4- = 5,5'-(hydrazine-1,2-diylidenebis(methanylylidene))bis(2-oxidobenzoate)), constructed from an azine-bonded organic ligand obtained through a facile condensation reaction at room temperature. Functionalization of Mg2(hob) with N-methylethylenediamine, N-ethylethylenediamine, and N,N'-dimethylethylenediamine (mmen) enables strong interactions with low-pressure CO2, resulting in top-tier adsorption capacities of 2.60, 2.49, and 2.91 mmol g-1 at 400 ppm of CO2, respectively. Under humid conditions, the CO2 capacity was higher than under dry conditions due to the presence of water molecules that aid in the formation of bicarbonate species. A composite material combining mmen-Mg2(hob) and polyvinylidene fluoride, a hydrophobic polymer, retained its excellent adsorption performance even after 7 days of exposure to 40% relative humidity. In addition, the one-pot synthesis of Mg2(hob) from a mixture of the corresponding monomers is achieved without separate ligand synthesis steps; thus, this framework is suitable for facile large-scale production. This work underscores that the newly synthesized Mg2(hob) and its composites demonstrate significant potential for DAC applications.

5.
ChemSusChem ; : e202400595, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017979

ABSTRACT

Purifying C2H4 from a ternary C2H2/C2H4/C2H6 mixture poses a substantial industrial challenge due to their close physical and chemical properties. In this study, we introduce an innovative design approach to regulate and optimize the nitration degree of a hypercrosslinked polymer to achieve targeted separation performance. We synthesized a porous organic polymer (HCP) using the solvent knitting method and carried out its postsynthetic nitration, resulting in HCP-NO2-1 and HCP-NO2-2 with different nitration degrees. Notably, the adsorption capacity shifted from C2H6 > C2H4 ≈ C2H2 for HCP to C2H2 > C2H6 > C2H4 for HCP-NO2-1 and to C2H2 > C2H4 ≈ C2H6 for HCP-NO2-2, demonstrating the controllable nature of the separation process via the polar nitro group insertion. Remarkably, HCP-NO2-1 exhibited a desirable, selective separation of C2H4 from the C2H6/C2H4/C2H2 mixture thanks to an exquisite combination of the acidic proton-polar nitro group and nonpolar C-H∙∙∙π interactions. Separation capability was further corroborated by computational simulations and breakthrough tests. This work marks a significant advancement as the first successful postsynthetic functionalization strategy for C2H4 purification from a ternary gas mixture among porous organic polymers.

6.
Adv Mater ; 36(26): e2401739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38618663

ABSTRACT

Hydrogen storage is crucial in the shift toward a carbon-neutral society, where hydrogen serves as a pivotal renewable energy source. Utilizing porous materials can provide an efficient hydrogen storage solution, reducing tank pressures to manageable levels and circumventing the energy-intensive and costly current technological infrastructure. Herein, two highly porous aromatic frameworks (PAFs), C-PAF and Si-PAF, prepared through a Yamamoto C─C coupling reaction between trigonal prismatic monomers, are reported. These PAFs exhibit large pore volumes and Brunauer-Emmett-Teller areas, 3.93 cm3 g-1 and 4857 m2 g-1 for C-PAF, and 3.80 cm3 g-1 and 6099 m2 g-1 for Si-PAF, respectively. Si-PAF exhibits a record-high gravimetric hydrogen delivery capacity of 17.01 wt% and a superior volumetric capacity of 46.5 g L-1 under pressure-temperature swing adsorption conditions (77 K, 100 bar → 160 K, 5 bar), outperforming benchmark hydrogen storage materials. By virtue of the robust C─C covalent bond, both PAFs show impressive structural stabilities in harsh environments and unprecedented long-term durability. Computational modeling methods are employed to simulate and investigate the structural and adsorption properties of the PAFs. These results demonstrate that C-PAF and Si-PAF are promising materials for efficient hydrogen storage.

7.
ACS Appl Mater Interfaces ; 16(13): 16553-16562, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570940

ABSTRACT

In this study, two novel multiple resonance (MR) emitters, DtCzBN and Cy-DtCzBN, were designed based on the well-known BCzBN structure and synthesized for narrowband solution-processed organic light-emitting diodes (OLEDs). Cy-DtCzBN possesses a dimeric V-shaped structure formed by coupling two individual DtCzBN units via a nonconjugated cyclohexane linker. When compared with DtCzBN, Cy-DtCzBN, as a medium-sized molecule, was found to maintain the optical and photophysical properties of the corresponding monomeric unit, DtCzBN, but exhibits high thermal stability, excellent solubility, and good film-forming ability. Additionally, solution-processed OLEDs were fabricated by using two sets of molecules: one set of small molecular hosts and emitters (i.e., mCP and DtCzBN) and the other set of medium-sized molecular hosts and emitters (i.e., Cy-mCP and Cy-DtCzBN). Notably, devices using medium-sized molecular hosts and emitters exhibited similar optical and photophysical properties but showed significantly improved reproducibility and thermal stability compared with those based on small molecular hosts and emitters. Our current study provides some insights into molecular design strategies for thermally stable hosts and emitters, which are highly suitable for solution-processed OLEDs.

8.
Angew Chem Int Ed Engl ; 63(21): e202400855, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38503692

ABSTRACT

Postsynthetic modifications (PSMs) of metal-organic frameworks (MOFs) play a crucial role in enhancing material performance through open metal site (OMS) functionalization or ligand exchange. However, a significant challenge persists in preserving open metal sites during ligand exchange, as these sites are inherently bound by incoming ligands. In this study, for the first time, we introduced alkoxides by exchanging bridging chloride in Ni2Cl2BTDD (BTDD=bis (1H-1,2,3,-triazolo [4,5-b],-[4',5'-i]) dibenzo[1,4]dioxin) through PSM. Rietveld refinement of synchrotron X-ray diffraction data indicated that the alkoxide oxygen atom bridges Ni(II) centers while the OMSs of the MOF are preserved. Due to the synergy of the existing OMS and introduced functional group, the alkoxide-exchanged MOFs showed CO2 uptakes superior to the pristine MOF. Remarkably, the tert-butoxide-substituted Ni_T exhibited a nearly threefold and twofold increase in CO2 uptake compared to Ni2Cl2BTDD at 0.15 and 1 bar, respectively, as well as high water stability relative to the other exchanged frameworks. Furthermore, the Grand Canonical Monte Carlo simulations for Ni_T suggested that CO2 interacts with the OMS and the surrounding methyl groups of tert-butoxide groups, which is responsible for the enhanced CO2 capacity. This work provides a facile and unique synthetic strategy for realizing a desirable OMS-incorporating MOF platform through bridging ligand exchange.

9.
ACS Appl Mater Interfaces ; 16(7): 9068-9077, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38345827

ABSTRACT

Metal-organic frameworks (MOFs), a sort of crystalline porous coordination polymers composed of metal ions and organic linkers, have been intensively studied for their ability to take up nonpolar gas-phase molecules such as ethane and ethylene. In this context, interpenetrated MOFs, where multiple framework nets are entwined, have been considered promising materials for capturing nonpolar molecules due to their relatively higher stability and smaller micropores. This study explores a solvent-assisted reversible strategy to interpenetrate and deinterpenetrate a Cu(II)-based MOF, namely, MOF-143 (noninterpenetrated form) and MOF-14 (doubly interpenetrated forms). Interpenetration was achieved using protic solvents with small molecular sizes such as water, methanol, and ethanol, while deinterpenetration was accomplished with a Lewis-basic solvent, pyridine. Additionally, this study investigates the adsorptive separation of ethane and ethylene, which is a significant application in the chemical industry. The results showed that interpenetrated MOF-14 exhibited higher ethane and ethylene uptakes compared to the noninterpenetrated MOF-143 due to narrower micropores. Furthermore, we demonstrate that pristine MOF-14 displayed higher ethane selectivity than transformed MOF-14 from MOF-143 by identifying the "fraction of micropore volume" as a key factor influencing ethane uptake. These findings highlight the potential of controlled transformations between interpenetrated and noninterpenetrated MOFs, anticipating that larger MOF crystals with narrower micropores and higher crystallinity will be more suitable for selective gas capture and separation applications.

10.
J Am Chem Soc ; 146(1): 646-659, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38151051

ABSTRACT

Among the various metal-organic framework (MOF) adsorbents, diamine-functionalized Mg2(dobpdc) (dobpdc4- = 4,4-dioxidobiphenyl-3,3'-dicarboxylate) shows remarkable carbon dioxide removal performance. However, applying diamine-functionalized Mg2(dobpdc) in practical applications is premature because it shows persistent performance degradation under real flue gas conditions containing water vapor owing to diamine loss during wet cycles. To address this issue, we employed hydrophobic carbonate compounds to protect diamine groups in een-Mg2(dobpdc) (een-MOF, een = N-ethylethylenediamine). tert-Butyl dicarbonate (Boc) reacted rapidly with diamines at the pore openings of MOF particles to form dense secondary and tertiary hydrophobic amines, effectively preventing moisture ingress. The Boc-protected een-MOF-Boc1 maintained excellent CO2 adsorption even under simulated flue gas conditions containing 10% H2O. This observation indicates that Boc protection renders een groups intact during repeated wet cycles, suggesting that Boc-protected een groups are resistant to replacement by water molecules. To increase the practicability of the MOF adsorbent, we fabricated een-MOF/PAN-Boc1 composite beads by shaping MOF particles with polyacrylonitrile (PAN). Notably, the composite beads maintained their CO2 adsorption performance even after repeating the temperature swing adsorption process more than 150 times in 10% water vapor. Furthermore, breakthrough tests showed that the dynamic CO2 separation performance was retained under humid conditions. These results demonstrate that Boc protection provides an easy and effective way to develop promising adsorbents with high CO2 adsorption capacity, long-term durability, and the properties required for postcombustion applications.

11.
Nanoscale ; 15(30): 12471-12475, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37462135

ABSTRACT

The MOF-type Ni2(dobpdc) shows a high chemical stability towards SO2, high capacity for SO2 capture at low pressure (4.3 mmol g-1 at 298 K and up to 0.05 bar), and exceptional cycling performance. Fluorescence experiments demonstrated the SO2 detection properties of Ni2(dobpdc) with a remarkable SO2 detection selectivity. Finally, time-resolved photoluminescence experiments provided a plausible mechanism of SO2 detection by this Ni(II)-based MOF material.

12.
J Hazard Mater ; 458: 131835, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37348374

ABSTRACT

The nuclear industry will continue to develop rapidly and produce energy in the foreseeable future; however, it presents unique challenges regarding the disposal of released waste radionuclides because of their volatility and long half-life. The release of radioactive isotopes of iodine from uranium fission reactions is a challenge. Although various adsorbents have been explored for the uptake of iodine, there is still interest in novel adsorbents. The novel adsorbents should be synthesized using reliable and economically feasible synthetic procedures. Herein, we discussed the state-of-the-art performance of various categories of porous organic materials including covalent organic frameworks, covalent triazine frameworks, porous aromatic frameworks, porous organic cages, among other porous organic polymers for the uptake of iodine. This review discussed the synthesis of porous organic materials and their iodine adsorption capacity and reusability. Finally, the challenges and prospects for iodine capture using porous organic materials are highlighted.

13.
Small ; 19(41): e2303640, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37287400

ABSTRACT

In reticular chemistry, topology is a powerful concept for defining the structures of covalent organic frameworks (COFs). However, due to the lack of diversity in the symmetry and reaction stoichiometry of the monomers, only 5% of the two-dimensional topologies have been reported to be COFs. To overcome the limitations of COF connectivity and pursue novel topologies in COF structures, two aminal-linked COFs, KUF-2 and KUF-3, are prepared, with dumbbell-shaped secondary building units. Linear dialdehydes and piperazine are condensed at a ratio of 1:2 to construct an aminal linkage, leading to unreported hxl-a (KUF-2) and quasi-hcb (KUF-3) structures. Notably, KUF-3 displays top-tier C2 H6 /C2 H4 selectivity and C2 H6 uptake at 298 K, outperforming most porous organic materials. The intrinsic aromatic ring-rich and Lewis basic pore environments, and appropriate pore widths enable the selective adsorption of C2 H6 , as confirmed by Grand Canonical Monte Carlo simulations. Dynamic breakthrough curves revealed that C2 H6 can be selectively separated from a gas mixture of C2 H6 and C2 H4 . This study suggests that topology-based design of aminal-COFs is an effective strategy for expanding the field of reticular chemistry and provides the facile integration of strong Lewis basic sites for selective C2 H6 /C2 H4 separation.

14.
Small ; 19(35): e2301905, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37093175

ABSTRACT

The development of adsorbents for Kr and Xe separation is essential to meet industrial demands and for energy conservation. Although a number of previous studies have focused on Xe-selective adsorbents, stimuli-responsive Xe/Kr-selective adsorbents still remain underdeveloped. Herein, a Hofmann-type framework Co(DABCO)[Ni(CN)4 ] (referred to as CoNi-DAB; DABCO = 1,4-diazabicyclo[2,2,2]octane) that provides a temperature-dependent switchable Xe/Kr separation performance is reported. CoNi-DAB showed high Kr/Xe (0.8/0.2) selectivity with significant Kr adsorption at 195 K as well as high Xe/Kr (0.2/0.8) selectivity with superior Xe adsorption at 298 K. Such adsorption features are associated with the temperature-dependent rotational configuration of the DABCO ligand, which affects the kinetic gate-opening temperature of Xe and Kr. The packing densities of Xe (2.886 g cm-3 at 298 K) and Kr (2.399 g  cm-3 at 195 K) inside the framework are remarkable and comparable with those of liquid Xe (3.057 g cm-3 ) and liquid Kr (2.413 g cm-3 ), respectively. Breakthrough experiments confirm the temperature-dependent reverse separation performance of CoNi-DAB at 298 K under dry and wet (88% relative humidity) conditions and at 195 K under dry conditions. The unique adsorption behavior is also verified through van der Waals (vdW)-corrected density functional theory (DFT) calculations and nudged elastic band (NEB) simulations.

15.
Nat Commun ; 14(1): 1498, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932086

ABSTRACT

Engineering excitation wavelength of photosensitizers (PSs) for enhanced reactive oxygen species (ROS) generation has inspired new windows for opportunities, enabling investigation of previously impracticable biomedical and photocatalytic applications. However, controlling the wavelength corresponding to operating conditions remains challenging while maintaining high ROS generation. To address this challenge, we implement a wavelength-engineerable imidazolium-based porous organic photocatalytic ROS generation system (KUP system) via a cost-effective one-pot reaction. Remarkably, the optimal wavelength for maximum performance can be tuned by modifying the linker, generating ROS despite the absence of metal ions and covalently attached heavy atoms. We demonstrate that protonated polymerization exclusively enables photosensitization and closely interacts with oxygen related to the efficiency of photosensitizing. Furthermore, superior tumor eradication and biocompatibility of the KUP system were confirmed through bioassays. Overall, the results document an unprecedented polymerization method capable of engineering wavelength, providing a potential basis for designing nanoscale photosensitizers in various ROS-utilizing applications.

16.
Angew Chem Int Ed Engl ; 62(2): e202214301, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36367202

ABSTRACT

We proposed a new strategy to maximize the density of acidic groups by modulating the electronic effects of the substituents for high-performance proton conductors. The conductivity of the sulfonated 1-MeL40-S with methyl group corresponds to 2.29×10-1  S cm-1 at 80 °C and 90 % relative humidity, remarkably an 22100-fold enhancement over the nonsulfonated 1-MeL40. 1-MeL40-S maintains long-term conductivity for one month. We confirm that this synthetic method is generalized to the extended version POPs, 2-MeL40-S and 3-MeL40-S. In particular, the conductivities of the POPs compete with those of top-level porous organic conductors. Moreover, the activation energy of the POPs is lower than that of the top-performing materials. This study demonstrates that systematic alteration of the electronic effects of substituents is a useful route to improve the conductivity and long-term durability of proton-conducting materials.

17.
STAR Protoc ; 3(4): 101690, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36125930

ABSTRACT

Although porous organic polymer (POP) has been explored as a promising photosensitizer, its powdered form makes it unfavorable for practical applications. Here, we demonstrate a protocol for fabricating imidazoline-based POP composites using fabric and sponge as substrates. This fabrication is limited to POPs with aldehyde containing organic building blocks. For complete details on the use and execution of this protocol, please refer to Kim et al. (2022).


Subject(s)
Mustard Gas , Porosity , Aldehydes , Polymers
18.
Chem Soc Rev ; 51(15): 6864, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35837999

ABSTRACT

Correction for 'Post-synthetic modifications in porous organic polymers for biomedical and related applications' by Ji Hyeon Kim et al., Chem. Soc. Rev., 2022, 51, 43-56, https://doi.org/10.1039/D1CS00804H.

19.
J Am Chem Soc ; 144(23): 10309-10319, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35657696

ABSTRACT

Although diamine-appended metal-organic framework (MOF) adsorbents exhibit excellent CO2 adsorption performance, a continuous decrease in long-term capacity during repeated wet cycles remains a formidable challenge for practical applications. Herein, we present the fabrication of diamine-appended Mg2(dobpdc)-alumina beads (een-MOF/Al-Si-Cx; een = N-ethylethylenediamine; x = number of carbon atoms attached to epoxide) coated with hydrophobic silanes and alkyl epoxides. The reaction of epoxides with diamines in the portal of the pore afforded sufficient hydrophobicity, hindered the penetration of water vapor into the pores, and rendered the modified diamines less volatile. een-MOF/Al-Si-C17-200 (een-MOF/Al-Si-C17-y; y = 50, 100, and 200, denoting wt % of C17 with respect to the bead, respectively), with substantial hydrophobicity, showed a significant uptake of 2.82 mmol g-1 at 40 °C and 15% CO2, relevant to flue gas concentration, and a reduced water adsorption. The modified beads maintained a high CO2 capacity for over 100 temperature-swing adsorption cycles in the presence of 5% H2O and retained CO2 separation performance in breakthrough tests under humid conditions. This result demonstrates that the epoxide coating provides a facile and effective method for developing promising adsorbents with high CO2 adsorption capacity and long-term durability, which is a required property for postcombustion applications.


Subject(s)
Diamines , Metal-Organic Frameworks , Adsorption , Carbon Dioxide/chemistry , Diamines/chemistry , Epoxy Compounds , Metal-Organic Frameworks/chemistry
20.
J Am Chem Soc ; 144(22): 9672-9683, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35608536

ABSTRACT

Ammonia is a promising energy vector that can store the high energy density of hydrogen. For this reason, numerous adsorbents have been investigated as ammonia storage materials, but ammonia adsorbents with a high gravimetric/volumetric ammonia capacity that can be simultaneously regenerated in an energy-efficient manner remain underdeveloped, which hampers their practical implementation. Herein, we report Ni_acryl_TMA (TMA = thiomallic acid), an acidic group-functionalized metal-organic framework prepared via successive postsynthetic modifications of mesoporous Ni2Cl2BTDD (BTDD = bis(1H-1,2,3,-triazolo [4,5-b],-[4',5'-i]) dibenzo[1,4]dioxin). By virtue of the densely located acid groups, Ni_acryl_TMA exhibited a top-tier gravimetric ammonia capacity of 23.5 mmol g-1 and the highest ammonia storage of 0.39 g cm-3 at 1 bar and 298 K. The structural integrity and ammonia storage capacity of Ni_acryl_TMA were maintained after ammonia adsorption-desorption tests over five cycles. Temperature-programmed desorption analysis revealed that the moderate strength of the interaction between the functional groups and ammonia significantly reduced the desorption temperature compared to that of the pristine framework with open metal sites. The structures of the postsynthetic modified analogues were elucidated based on Pawley/Rietveld refinement of the synchrotron powder X-ray diffraction patterns and van der Waals (vdW)-corrected density functional theory (DFT) calculations. Furthermore, the ammonia adsorption mechanism was investigated via in situ infrared and vdW-corrected DFT calculations, revealing an atypical guest-induced binding mode transformation of the integrated carboxylate. Dynamic breakthrough tests showed that Ni_acryl_TMA can selectively capture traces of ammonia under both dry and wet conditions (80% relative humidity). These results demonstrate that Ni_acryl_TMA is a superior ammonia storage/capture material.

SELECTION OF CITATIONS
SEARCH DETAIL