Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.000
Filter
1.
Clin Chim Acta ; 564: 119930, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39154701

ABSTRACT

Recessive congenital methemoglobinemia (RCM) is a hereditary autosomal disorder with an extremely low incidence rate. Here, we report a case of methemoglobinemia type I in a patient with congenital persistent cyanosis. The condition was attributed to a novel compound heterozygous mutation in CYB5R3, characterized by elevated methemoglobin levels (13.4 % of total hemoglobin) and undetectable NADH cytochrome b5 reductase (CYB5R3) activity. Whole-exome sequencing (WES) revealed two heterozygous mutations in CYB5R3: a previously reported pathogenic missense mutation c.611G>A(p.Cys204Tyr) inherited from the father, and a novel stop codon mutation c.906A>G(p.*302Trpext*42) from the mother, the latter mutation assessed as likely pathogenic according to ACMG guidelines. In cells overexpressing the CYB5R3 c.906A>G mutant construct, the CYB5R3 mRNA level was significantly lower than in cells overexpressing the wild-type (WT) CYB5R3 construct. However, there was no significant difference in protein expression levels between the mutant and WT constructs. Notably, an additional protein band of approximately 55 kDa was detected in the mutant cells. Immunofluorescence localization showed that, compared to wild-type CYB5R3, the subcellular localization of the CYB5R3 p.*302Trpext*42 mutant protein did not show significant changes and remained distributed in the endoplasmic reticulum and mitochondria. However, the c.906A>G(p.*302Trpext*42) mutation resulted in increased intracellular reactive oxygen species (ROS) levels and decreased NAD+/NADH ratio, suggesting impaired CYB5R3 function and implicating this novel mutation as likely pathogenic.


Subject(s)
Cytochrome-B(5) Reductase , Methemoglobinemia , Mutation , Humans , Male , Codon, Terminator/genetics , Cytochrome-B(5) Reductase/genetics , Cytochrome-B(5) Reductase/deficiency , Methemoglobinemia/genetics , Methemoglobinemia/congenital , Adult
2.
Adv Mater ; : e2409533, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39380404

ABSTRACT

Despite their favorable high energy density and potential for CO2 recycling, Na-CO2 batteries have been held back by limitations in cycling capability, stemming from the sluggish CO2 reduction/evolution reaction (CO2RR/CO2ER) kinetics at CO2 cathode and unmanageable deposition/stripping of metallic Na at the anode upon cycling. Herein, a "two-in-one" electrode with multiscale defective FeCu interfaces (CP@FeCu) is presented, which is capable of improving the CO2RR/CO2ER kinetics of CO2-breathing cathode, while modulating sodium deposition behavior. Experimental and theoretical investigations reveal multiscale defective FeCu interfaces are responsible for the enhancement of sodiophilicity and catalytic properties. The defect and valence oscillation effects originate in multiscale defective FeCu interfaces, effectively facilitating the adsorption of reactants and decomposition of Na2CO3 during CO2RR/CO2ER processes, along with exceptional cycling stability of 2400 cycles (4800 h) at 5 µA cm-2. Meanwhile, the CP@FeCu with sodium affinity creates a uniform electric field and robust adsorption for Na, making initial nucleation sites more conducive to Na deposition and achieving dendrite-resistant and durable anodes. This work offers a scientific insight into the functionalization design of "two-in-one" electrodes, which is essential for a unified solution to the challenges in sodium anodes and CO2 cathodes.

3.
Plant Cell Environ ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373541

ABSTRACT

Lycoris aurea, celebrated for its visually striking flowers and significant medicinal value due to the presence of alkaloids such as lycorine and galanthamine, has intricate yet poorly understood regulatory mechanisms. This study provides a detailed examination of the transcriptomic, metabolomic and ecological dynamics of L. aurea, aiming to elucidate the underlying molecular mechanisms of alkaloid biosynthesis. Our comparative analysis across different ecological settings highlighted key genes involved in alkaloid biosynthesis, such as genes encoding aldehyde dehydrogenase and norbelladine 4'-O-methyltransferase, which were distinctively increased in the high alkaloids-producing group. We identified a total of 6871 differentially expressed genes and 915 metabolites involved in pathways like terpenoid backbone biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis. Protein interaction network analysis revealed significant upregulation of photosynthesis, photosystem and photosynthetic membrane pathways in the alkaloids-producing region. Furthermore, our research delineated the interactions among soil microbial communities, genes and plant and soil biochemical properties, noting that bacterial populations correlate with soil properties that favour the activation of metabolic pathways essential for alkaloid production. Collectively, this study advances our understanding of the genetic and metabolic alkaloid biosynthesis pathways in L. aurea, shedding light on the complex interactions that govern alkaloid production.

4.
PLoS One ; 19(10): e0310547, 2024.
Article in English | MEDLINE | ID: mdl-39392848

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) is a common monogenic autosomal dominant disorder, primarily mainly caused by pathogenic mutations in the low-density lipoprotein receptor (LDLR) gene. Through phenotypic-genetic linkage analysis, two LDLR pathogenic mutations were identified in FH families: c.G1027A (p.Gly343Ser) and c.G1879A (p.Ala627Thr). MATERIALS AND METHODS: Whole exome sequencing was conducted on the proband with familial hypercholesterolemia to identify the target gene and screen for potential pathogenic mutations. The suspicious responsible mutation sites in 14 family members were analyzed using Sanger sequencing to assess genotype-phenotype correlations. Mutant and wild type plasmids were constructed and transfected into HEK293T cells to evaluate LDLR mRNA and protein expression. In parallel, bioinformatics tools were employed to predict structural and functional changes in the mutant LDLR. RESULTS: Immunofluorescence analysis revealed no significant difference in the intracellular localization of the p.Gly343Ser mutation, whereas protein expression of the p.Ala627Thr mutation was decreased and predominantly localized in the cytoplasm. Western blotting has showed that protein expression levels of the mutant variants were markedly declined in both cell lysates and supernatants. Enzyme linked immunosorbent assay has demonstrated that LDLR protein levels in the supernatant of cell culture medium was not significant different from those of the wild-type group. However, LDLR protein levels in the cell lysate of both the Gly343Ser and Ala627Thr variants groups were significantly lower than those in the wild-type group. Bioinformatic predictions further suggested that these mutations may affect post-translational modifications of the protein, providing additional insight into the mechanisms underlying the observed reduction in protein expression. CONCLUSIONS: In this study, we identified two heterozygous pathogenic variants in the LDLR gene, c.G1027A (p.Gly343Ser) and c.G1879A (p.Ala627Thr), in a family with familial hypercholesterolemia. We also conducted preliminary investigations into the mechanisms by which these mutations contribute to disease pathology.


Subject(s)
Hyperlipoproteinemia Type II , Mutation , Pedigree , Receptors, LDL , Humans , Receptors, LDL/genetics , Hyperlipoproteinemia Type II/genetics , Female , Male , HEK293 Cells , Adult , Middle Aged , Exome Sequencing
5.
Inorg Chem ; 63(41): 19287-19298, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39344080

ABSTRACT

Three isostructural transition metal-organic frameworks, [M(bta)0.5(bpt)(H2O)2]·2H2O (M = Co (1), Ni (2), Zn (3), H4bta = 1,2,4,5-benzenetetracarboxylic acid, bpt = 4-amino-3,5-bis(4-pyridyl)-1,2,4-triazole), were successfully constructed using different metal cations. These frameworks exhibit a three-dimensional network structure with multiple coordinated and lattice water molecules within the framework, contributing to high stability and a rich hydrogen-bond network. Proton conduction studies revealed that, at 333 K and 98% relative humidity, the proton conductivities (σ) of MOFs 1-3 reached 1.42 × 10-2, 1.02 × 10-2, and 6.82 × 10-3 S cm-1, respectively. Compared to the proton conductivity of the initial ligands, the σ values of the complexes increased by 2 orders of magnitude, with the activation energies decreasing from 0.36 to 0.18 eV for 1, 0.09 eV for 2, and 0.12 eV for 3. An in-depth analysis of the correlation between different metal centers and proton conduction performance indicated that the varying coordination abilities of the metal cations and the water absorption capacities of the frameworks might account for the differences in conductivity. Additionally, the potential of 1 as a supercapacitor electrode material was assessed. 1 exhibited a specific capacitance of 61.13 F g-1 at a current density of 0.5 A g-1, with a capacitance retention of 82.4% after 5000 cycles, making it a promising candidate for energy storage applications.

6.
Zhongguo Gu Shang ; 37(9): 870-7, 2024 Sep 25.
Article in Chinese | MEDLINE | ID: mdl-39342470

ABSTRACT

OBJECTIVE: To compare early clinical and imaging results of domestic HURWA and imported Brainlab Knee3 surgical robot-assisted knee replacement. METHODS: A retrospective analysis was performed on 93 patients with knee osteoarthritis (KOA) who underwent robot-assisted descending total knee arthroplasty(TKA) from January 2021 to July 2023, and they were divided into BRATKA group and HRATKA group according to use of robotic system. There were 40 patients in BRATKA group, including 16 males and 24 females, aged from 55 to 90 years old with an average of (64.3±7.0) years old;27 patients with grade Ⅲ and 13 patients with grade Ⅳ according to Kellgren-Lawrence(K-L);18 patients on the right side and 22 patients on the left side;the courses of disease ranged from 1 to 30 years with an average of (15.3±7.6) years;imported Brainlab Knee3 surgical robot assisted system was adopted. There were 53 patients in HRATKA group, including 18 males and 35 females, aged from 52 to 81 years old with an average of (64.4±8.5) years old;30 patients with grade Ⅲ and 23 patients with grade Ⅳ;21 patients on the right side and 32 patients on the left side;the courses of disease ranged from 1 to 32 years with an average of (16.4±7.9) years;HURWA surgical robot assisted system was adopted. Operation time, perioperative total blood loss, incision length and postoperative complications were compared between two groups. Deviation angle of hip-knee-ankle angle(HKAA) before operation and on the first day after operation was compared between two groups. Later tibal component (LTC), frontal femoral component (FFC), later femoral component (LFC) and frontal tibal component(FTC) at 1 day after on the first day after operation was compared between two groups. Knee Society score(KSS), visual analogue scale (VAS) and range of motion (ROM) of knee joint were compared between two groups before operation and on the 3rd and 90th day after operation. RESULTS: Both groups were followed up for 11 to 18 months with an average of (14.4±2.1) months, and the wounds of all patients healed well. Operation time and incision length of BRATKA group were (132.1±34.6) min and (12.9±1.9) cm, while (94.1±10.8) min and (14.8±2.1) cm in HRATKA group, respectively, and the differences between two groups were statistically significant(P<0.05). There were no significant difference in perioperative total blood loss and preoperative deviation angle of HKAA between two groups(P>0.05). Deviation angle of HKAA, FFC angle and LFC angle in BRATKA group were (1.90±0.91) °, (87.90±1.51) ° and(9.00±3.2) °, respectively;while (0.93±1.04) °, (89.03±0.96) ° and (7.63±0.59) ° in HRATKA group, respectively, and the differences between two groups were statistically significant (P<0.05). There were no significant differences in FTC and LTC between two groups(P>0.05). There were no significant differences in VAS of knee rest and exercise, KSS score and ROM of knee joint between two groups before operation and 3 days and 90 days after operation(P>0.05). There was no significant difference in complications between two groups (P>0.05). CONCLUSION: Postoperative imaging of two robot systems showed good lower limb force line. The domestic HRATKA group had better LFC, FFC angle and HKA deviation angle than the imported BRATKA group, but there were no significant difference in postoperative knee function and pain relief.


Subject(s)
Arthroplasty, Replacement, Knee , Robotic Surgical Procedures , Humans , Male , Female , Arthroplasty, Replacement, Knee/methods , Arthroplasty, Replacement, Knee/instrumentation , Retrospective Studies , Aged , Middle Aged , Robotic Surgical Procedures/methods , Aged, 80 and over , Osteoarthritis, Knee/surgery
7.
Phytomedicine ; 135: 156067, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39326137

ABSTRACT

BACKGROUND: Renal fibrosis is a hallmark of chronic kidney disease (CKD). Smad3 serves as the principal transcription factor mediating the pro-fibrosis effects of TGF-ß signaling in renal fibrosis. Biochanin A (BCA), a natural isoflavone, has been shown to attenuate renal fibrosis by inhibiting TGF-ß signaling but the detailed mechanisms remain unresolved. This study aimed to elucidate the specific mechanisms by which BCA modulates TGF-ß signaling. METHODS: Renal fibrosis models were established both in vitro, using TGF-ß1-stimulated mouse renal tubular TCMK1 cells, and in vivo, employing mice with unilateral ureter obstruction (UUO). RNA-seq was conducted to identify BCA-regulated genes. The AnimalTFDB4.0 database was utilized to predict transcription factors with potential binding to Smad3 promoter. The activities of TGF-ß signaling and the cloned mouse Smad3 promoter were assessed using luciferase reporter assays. Plasmid transfection was performed using polyethylenimine in TCMK1 cells or ultrasound microbubbles in UUO kidneys. Gene expression was analyzed by RT-PCR, western blot, and immunohistochemistry assays. RESULTS: BCA significantly inhibited TGF-ß signaling activity and suppressed TGF-ß1-induced fibrotic gene expression in TCMK1 cells. RNA-seq and in silico analyses identified Smad3 as the key gene downregulated by BCA, while leaving Smad2 unaffected. This selective transcriptional suppression of Smad3 by BCA was validated by luciferase reporter assays using the cloned Smad3 promoter. Furthermore, transcription factor binding prediction identified that Klf6, a transcription factor downregulated by BCA, has binding potential to the Smad3 promoter and promotes Smad3 transcription. Klf6 expression was induced in TGF-ß1-stimulated TCMK1 cells and UUO kidneys, but this induction was abolished upon BCA treatment. Importantly, Klf6 overexpression restored Smad3 expression and counteracted the anti-fibrosis effects of BCA in both TGF-ß1-stimulated TCMK1 cells and UUO kidneys. CONCLUSION: TGF-ß-responsive Klf6 transcriptionally transactivates Smad3 expression. BCA exerts anti-renal fibrosis effects by inhibiting the Klf6-Smad3 signaling axis, underscoring its therapeutic potential in the treatment of CKD.

8.
World J Gastroenterol ; 30(29): 3511-3533, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39156500

ABSTRACT

BACKGROUND: Calculus bovis (CB), used in traditional Chinese medicine, exhibits anti-tumor effects in various cancer models. It also constitutes an integral component of a compound formulation known as Pien Tze Huang, which is indicated for the treatment of liver cancer. However, its impact on the liver cancer tumor microenvironment, particularly on tumor-associated macrophages (TAMs), is not well understood. AIM: To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/ß-catenin pathway modulation. METHODS: This study identified the active components of CB using UPLC-Q-TOF-MS, evaluated its anti-neoplastic effects in a nude mouse model, and elucidated the underlying mechanisms via network pharmacology, transcriptomics, and molecular docking. In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs, and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis. RESULTS: This study identified 22 active components in CB, 11 of which were detected in the bloodstream. Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth. An integrated approach employing network pharmacology, transcriptomics, and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization. In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/ß-catenin pathway activation. The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001, confirming its pathway specificity. CONCLUSION: This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/ß-catenin pathway, contributing to the suppression of liver cancer growth.


Subject(s)
Liver Neoplasms , Mice, Nude , Molecular Docking Simulation , Tumor Microenvironment , Tumor-Associated Macrophages , Wnt Signaling Pathway , Wnt Signaling Pathway/drug effects , Animals , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Humans , Mice , Hep G2 Cells , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Cell Proliferation/drug effects , Mice, Inbred BALB C , Male , Network Pharmacology , beta Catenin/metabolism , Medicine, Chinese Traditional/methods
9.
Front Genet ; 15: 1419154, 2024.
Article in English | MEDLINE | ID: mdl-39184349

ABSTRACT

Background: Alport syndrome (AS) is a common cause of end-stage renal disease (ESRD) with various clinical symptoms and incomplete manifestation. Patients with AS and other renal disorders are often misdiagnosed. This study reported three X-linked dominant Alport syndrome (XLAS) pedigrees with nephrotic syndrome (NS) as the predominant phenotype and analyzed COL4A5 gene alterations. Methods: Three Han Chinese XLAS pedigrees were recruited, and clinical phenotypes were obtained. The pre-certified individuals' peripheral blood DNA was taken, and whole-genome next-generation sequencing (NGS) was performed for candidate genes and mutation screening, followed by NGS or Sanger sequencing of suspected mutant types in participating family members. Results: Both probands A and B were diagnosed with NS through biochemical tests, and X-linked Alport syndrome-associated renal injury was diagnosed by renal biopsy. The biopsy revealed focal foamy cells in the renal interstitium, tearing and delamination changes in the glomerular basement membrane, and negative α3 and α5 chains of type IV collagen. Proband C, who was earlier diagnosed with NS, has now advanced to ESRD, along with his mother and proband A's mother. Genetic sequencing of all three pedigrees identified three mutations, namely, c.5020C>T, c.4435_4445del, and c.1584_1587+6del in the X-linked dominant gene COL4A5 (NM_000495.5). These mutations lead to the production of shortened proteins, potentially impacting the function of COL4A5 and causing pathogenic effects. Conclusion: The novel c.4435_4445del and c.1584_1587+6del mutations not only enrich the spectrum of mutations in the COL4A5 gene but also indicate that carriers of both mutation sites and those with mutation c.5020C>T may present NS as their primary clinical manifestation.

10.
Int J Sports Med ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187257

ABSTRACT

This study aims to explore the relationship between blood biochemical indexes and injury risk of elite male athletes in racing ice sports. The male athletes compared the demographic indexes, monthly injuries, and longitudinal tracking data. The non-linear relationship was analyzed using an unrestricted cubic spline. Generalized estimating equations estimated the relative risk (OR) of injury occurrence. Receiver operating characteristics and the area under the curve determined diagnostic accuracy. In the snow sledding group, when creatine kinase rises to 489.46 u/L or Testosterone decreases to 41.32 ng/ml, the risk increases by 1.70 times (OR=1.70, p<0.001) and 1.69 times(OR=1.69, p<0.001) with statistical significance. the Creatine kinase (OR=1.01, P=0.007) and Testosterone (OR=1.00, P<0.001) were included in the injury prediction model. The model exhibits excellent discrimination, with sensitivity and specificity of 82.8% and 86.5%, respectively. In the ice skating group, when Creatine kinase rise to 467.00 u/L, the risk increases by 2.56 times with statistical significance (OR=2.56, p<0.001). Creatine kinase (OR=1.01, P<0.001) was included in the predictive model. The model demonstrates good discrimination, with sensitivity and specificity of 90.5% and 66.7%, respectively. Creatine kinase and Testosterone are the risk predictors of injury in elite snowmobile male athletes. Creatine kinase is an independent risk factor for injury in elite speed skaters.

11.
Front Neurosci ; 18: 1415576, 2024.
Article in English | MEDLINE | ID: mdl-39145297

ABSTRACT

Introduction: We previously reported that ATP1A3 c.823G>C (p.Ala275Pro) mutant causes varying phenotypes of alternative hemiplegia of childhood and rapid-onset dystonia-parkinsonism in the same family. This study aims to investigate the function of ATP1A3 c.823G>C (p.Ala275Pro) mutant at the cellular and zebrafish models. Methods: ATP1A3 wild-type and mutant Hela cell lines were constructed, and ATP1A3 mRNA expression, ATP1A3 protein expression and localization, and Na+-K+-ATPase activity in each group of cells were detected. Additionally, we also constructed zebrafish models with ATP1A3 wild-type overexpression (WT) and p.Ala275Pro mutant overexpression (MUT). Subsequently, we detected the mRNA expression of dopamine signaling pathway-associated genes, Parkinson's disease-associated genes, and apoptosisassociated genes in each group of zebrafish, and observed the growth, development, and movement behavior of zebrafish. Results: Cells carrying the p.Ala275Pro mutation exhibited lower levels of ATP1A3 mRNA, reduced ATP1A3 protein expression, and decreased Na+-K+-ATPase activity compared to wild-type cells. Immunofluorescence analysis revealed that ATP1A3 was primarily localized in the cytoplasm, but there was no significant difference in ATP1A3 protein localization before and after the mutation. In the zebrafish model, both WT and MUT groups showed lower brain and body length, dopamine neuron fluorescence intensity, escape ability, swimming distance, and average swimming speed compared to the control group. Moreover, overexpression of both wild-type and mutant ATP1A3 led to abnormal mRNA expression of genes associated with the dopamine signaling pathway and Parkinson's disease in zebrafish, and significantly upregulated transcription levels of bad and caspase-3 in the apoptosis signaling pathway, while reducing the transcriptional level of bcl-2 and the bcl-2/bax ratio. Conclusion: This study reveals that the p.Ala275Pro mutant decreases ATP1A3 protein expression and Na+/K+-ATPase activity. Abnormal expression of either wild-type or mutant ATP1A3 genes impairs growth, development, and movement behavior in zebrafish.

12.
Nat Prod Bioprospect ; 14(1): 45, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143298

ABSTRACT

Three new ent-kaurane diterpenoids, silvaticusins A-C (1-3), along with a new ent-kaurane dimer silvaticusin D (4) were isolated from the aerial parts of Isodon silvaticus. The structures of these new compounds were established mainly by comprehensive analysis of their NMR and MS data. The absolute configuration of compounds 1 and 4 were determined using a single-crystal X-ray diffraction and computational methods, respectively. Compounds 2 and 3 were found to exhibit remarkable cytotoxic effects against five human tumor cell lines (HL-60, A-549, SMMC-7721, MDA-MB-231, and SW-480), with IC50 values spanning from 1.27 ± 0.08 to 7.52 ± 0.33 µM.

13.
Pain Physician ; 27(5): E597-E610, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39087973

ABSTRACT

BACKGROUND: Over the past 3 decades, clinicians and scholars have used and studied the stellate ganglion block (SGB) extensively, making this field a highly anticipated research hot spot. To the best of our knowledge, there has been no bibliometric analysis of the SGB until now. OBJECTIVE: Our study aimed to complete multiple tasks regarding SGB research: identify the collaboration and impact of countries, institutions, journals, and authors, evaluate the knowledge base, trace the trends in hot spots, and explore the emerging topics relevant to the field. STUDY DESIGN: A bibliometric analysis. METHODS: Publications that were associated with the SGB and published between the years of 1993 and 2022 were retrieved from the Web of Science Core Collection on September 21st, 2023. CiteSpace 6.1.R6 and VOSviewer 1.6.18 were used to perform bibliometric and knowledge-map analyses. RESULTS: This study found a total of 837 publications originating from 51 countries and 1006 institutions. These articles were published in 393 journals. The United States was the country that produced the most articles focused on SGB, and the University of California, Los Angeles was the institution associated with the greatest number of publications. The anesthesiology and cardiology journals surveyed for this study published the most articles and received the most citations. Among the authors whose works were examined, Kitajima T had the greatest number of published articles, and Lipov E was the most frequently cited co-author. Five main domains of SGB research included electrical storm and refractory ventricular arrhythmia, breast cancer and climacteric medicine, post-traumatic stress disorder, pain management, and cerebrovascular diseases. The latest hot topics involving this field focused on SGB's anti-arrhythmic and anti-cerebral vasospasm effects and its treatment of long COVID syndrome. LIMITATIONS: Data were retrieved only from the WoSCC; therefore, publications in other databases might have been missed. CONCLUSION: This comprehensive bibliometric analysis conducted a complete overview of SGB research, which was helpful in furthering our understanding of research trends and locating research hot spots and gaps in this domain. This field is developing rapidly and will garner significant and continuous attention from future scholars.


Subject(s)
Autonomic Nerve Block , Bibliometrics , Stellate Ganglion , Humans , Autonomic Nerve Block/methods
14.
BMC Pulm Med ; 24(1): 409, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187806

ABSTRACT

PURPOSE: This study aimed to elucidate the causal relationship between Obstructive Sleep Apnea (OSA) and Chronic Respiratory Diseases (CRDs), employing Mendelian Randomization (MR) to overcome limitations inherent in observational studies. METHODS: Utilizing a two-sample MR approach, this study analyzed genetic variants as instrumental variables to investigate the causal link between OSA and various CRDs, including chronic obstructive pulmonary disease (COPD), asthma, bronchiectasis, and idiopathic pulmonary fibrosis (IPF). Data were sourced from the FinnGen Consortium (OSA, n = 375,657) and UK Biobank, focusing on genome-wide associations between single-nucleotide polymorphisms (SNPs) and the diseases. Instrumental variables were selected based on strict criteria, and analyses included a random-effects inverse-variance weighted method supplemented by several sensitivity analyses. RESULTS: The study suggests a protective effect of OSA against COPD (OR = 0.819, 95% CI 0.722-0.929, P-value = 0.002), which becomes non-significant after adjusting for BMI, indicating a potential mediating role of BMI in the OSA-COPD nexus. No significant causal links were found between OSA and other CRDs (asthma, IPF, bronchiectasis) or between COPD, asthma, and OSA. CONCLUSIONS: Our findings reveal a BMI-mediated protective effect of OSA on COPD, with no causal connections identified between OSA and other CRDs. These results emphasize the complex relationship between OSA, BMI, and COPD, guiding future clinical strategies and research directions, particularly in light of the study's genetic analysis limitations.


Subject(s)
Asthma , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/genetics , Sleep Apnea, Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/complications , Asthma/genetics , Asthma/epidemiology , Male , Female , Middle Aged , Bronchiectasis/genetics , Bronchiectasis/epidemiology , Genome-Wide Association Study , Body Mass Index , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/epidemiology , Aged , Chronic Disease
15.
RSC Adv ; 14(33): 24165-24174, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39101063

ABSTRACT

Hyperuricemia, characterized by elevated uric acid levels and subsequent crystal deposition, contributing to conditions such as gout, cardiovascular events, and kidney injury, poses a significant health threat, particularly in developed countries. Current drug options for treatment are limited, with safety concerns, leading to suboptimal therapeutic outcomes in symptomatic hyperuricemia patients and a lack of pharmaceutical interventions for asymptomatic cases. Distinguishing from the previous drug design strategies, we directly target uric acid, the pathological molecule of hyperuricemia, resulting in a pyrimidine derivative capable of increasing the solubility and excretion of uric acid by forming a complex with it. Its prodrug showed an anti-hyperuricemia activity comparable to benzbromarone and a favorable safety profile in vivo. Our finding provides a strategy purely based on organic chemistry to address the largely unmet therapeutic needs on novel anti-hyperuricemia drugs.

16.
Heliyon ; 10(14): e34353, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39108924

ABSTRACT

Wasp venom injections from wasp stings can damage several organs, most commonly the kidneys. Despite literature evidence, wasp sting-induced acute kidney injury (AKI) is rare and involves complex pathophysiological processes. While acute tubular necrosis (ATN) is the most prevalent histological result of wasp sting-induced AKI, uncommon combinations of chronic renal lesions have been described, alerting us to the patient's underlying illness. We report a 55-year-old hypertensive patient with unknown renal function who got AKI following multiple wasp stings. His renal function had not improved after continuous hemodialysis and plasma exchange; therefore, a kidney biopsy was performed. The pathology revealed that in addition to ATN, his kidney's distinguishing feature was a mix of chronic interstitial renal disease and chronic glomerulosclerosis. We think that his current renal pathological results were caused by hypertension in addition to wasp venom.

17.
Zhonghua Nan Ke Xue ; 30(3): 241-248, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-39177391

ABSTRACT

OBJECTIVE: To explore the potential action mechanism of Huotu Jiji Pellets (HJP) in the treatment of erectile dysfunction (ED) based on network pharmacology and molecular docking. METHODS: We identified the main effective compounds and active molecular targets of HJP from the database of Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Integrative Pharmacology-Based Research Platform of Traditional Chinese Medicine (TCMIP) and the therapeutic target genes of ED from the databases of Genecards. Then we obtained the common targets of HJP and ED using the Venny software, constructed a protein-protein interaction (PPI) network of HJP acting on ED, and screened out the core targets with the Cytoscape software. Lastly we performed GO functional enrichment and KEGG pathway enrichment analyses of the core targets followed by molecular docking of HJP and the core targets using Chem3D and AutoDock Tools and QuickVina-W software. RESULTS: A total of 64 effective compounds, 822 drug-related targets, 1 783 disease-related targets and 320 common targets were obtained in this study. PPI network analysis showed that the core targets of HJP for ED included ESR1, HSP90AA1, SRC, and STAT3. GO functional enrichment analysis indicated the involvement of the core targets in such biological processes as response to xenobiotic stimulus, positive regulation of kinase activity, and positive regulation of MAPK cascade. KEGG pathway enrichment analysis suggested that PI3K-Akt, apoptosis, MAPK, HIF-1, VEGF, autophagy and other signaling pathways may be related to the mechanism of HJP acting on ED. Molecular docking prediction exhibited a good docking activity of the key active molecules of HJP with the core targets. CONCLUSION: This study showed that HJP acted on ED through multi-components, multi-targets and multi-pathways, which has provided some evidence and reference for the clinical treatment and subsequent studies of the disease.


Subject(s)
Drugs, Chinese Herbal , Erectile Dysfunction , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Male , Erectile Dysfunction/drug therapy , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Humans , Signal Transduction
18.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3204-3211, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041081

ABSTRACT

Ursolic acid has gradually attracted much attention due to its unique pharmacological activities and valuable market value in recent years. Currently, ursolic acid is mostly extracted from loquat leaves, but the plant extraction method has low yield and high cost, and chemical synthesis is not readily available, so the biosynthesis method provides a new source for ursolic acid. α-amyrin acts as the main precursor for the synthesis of ursolic acid, and its yield is positively correlated with ursolic acid yield. Oxidosqualene cyclase(OSC) belongs to a multigene family which can catalyze the common precursor 2,3-oxidosqualene to generate different types of triterpene backbones, and plays a decisive role in the synthesis of triterpenoids. However, there are fewer reported key genes catalyzing the synthesis of α-amyrin in medicinal plants, and the yield and proportion of α-amyrin in the catalyzed products have always been a focus of research. In this study, ItOSC2, MdOSC1, AaOSC2 and CrAS, four enzymes capable of catalyzing the production of α-amyrin from 2,3-oxidosqualene, were cloned from Iris tectorum, Malus domestica, Artemisia annua and Catharanthus roseus, subject to sequence alignment and phylogenetic tree analyses, and transformed into Saccharomyces cerevisiae as plasmids. After 7 days of fermentation, the yield and proportions of α-amyrin, ß-amyrin and ergosterol were measured. Finally, AaOSC2 with the best ability to catalyze the generation of α-amyrin was filtered out, providing a key gene element for the later construction of engineered yeast strains with high production of α-amyrin and ursolic acid.


Subject(s)
Intramolecular Transferases , Oleanolic Acid , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/metabolism , Oleanolic Acid/chemistry , Oleanolic Acid/biosynthesis , Cloning, Molecular , Plant Proteins/genetics , Plant Proteins/metabolism , Triterpenes/metabolism , Triterpenes/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Phylogeny , Pentacyclic Triterpenes
19.
BMC Pulm Med ; 24(1): 343, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014333

ABSTRACT

BACKGROUND: Primary ciliary dyskinesia (PCD) is an autosomal recessive hereditary disease characterized by recurrent respiratory infections. In clinical manifestations, DNAH5 (NM_001361.3) is one of the recessive pathogenic genes. Primary familial brain calcification (PFBC) is a neurodegenerative disease characterized by bilateral calcification in the basal ganglia and other brain regions. PFBC can be inherited in an autosomal dominant or recessive manner. A family with PCD caused by a DNAH5 compound heterozygous variant and PFBC caused by a MYORG homozygous variant was analyzed. METHODS: In this study, we recruited three generations of Han families with primary ciliary dyskinesia combined with primary familial brain calcification. Their clinical phenotype data were collected, next-generation sequencing was performed to screen suspected pathogenic mutations in the proband and segregation analysis of families was carried out by Sanger sequencing. The mutant and wild-type plasmids were constructed and transfected into HEK293T cells instantaneously, and splicing patterns were detected by Minigene splicing assay. The structure and function of mutations were analyzed by bioinformatics analysis. RESULTS: The clinical phenotypes of the proband (II10) and his sister (II8) were bronchiectasis, recurrent pulmonary infection, multiple symmetric calcifications of bilateral globus pallidus and cerebellar dentate nucleus, paranasal sinusitis in the whole group, and electron microscopy of bronchial mucosa showed that the ciliary axoneme was defective. There was also total visceral inversion in II10 but not in II8. A novel splice variant C.13,338 + 5G > C and a frameshift variant C.4314delT (p. Asn1438lysfs *10) were found in the DNAH5 gene in proband (II10) and II8. c.347_348dupCTGGCCTTCCGC homozygous insertion variation was found in the MYORG of the proband. The two pathogenic genes were co-segregated in the family. Minigene showed that DNAH5 c.13,338 + 5G > C has two abnormal splicing modes: One is that part of the intron bases where the mutation site located is translated, resulting in early translation termination of DNAH5; The other is the mutation resulting in the deletion of exon76. CONCLUSIONS: The newly identified DNAH5 splicing mutation c.13,338 + 5G > C is involved in the pathogenesis of PCD in the family, and forms a compound heterozygote with the pathogenic variant DNAH5 c.4314delT lead to the pathogenesis of PCD.


Subject(s)
Calcinosis , Mutation , Pedigree , Humans , Male , Calcinosis/genetics , Calcinosis/pathology , Female , Axonemal Dyneins/genetics , Adult , Ciliary Motility Disorders/genetics , Brain Diseases/genetics , Phenotype , HEK293 Cells , China , RNA Splicing/genetics , Middle Aged , Glycoside Hydrolases
20.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037429

ABSTRACT

In our study, a method based on affinity ultrafiltration screening coupled with UPLC-ESI-Orbitrap-MS technology was established to select Glucagon-like peptide-1 receptor (GLP-1R) agonists from natural products, and as an example, the GLP-1R agonists from Panax ginseng was selected using our established method. As a result, total five GLP-1R agonists were selected from Panax ginseng for the first time. Our results indicated that activating GLP-1R to promote insulin secretion probably was another important hypoglycemia mechanism for ginsenosides in Panax ginseng, which had great influence on the study of the anti-diabetes effect of ginsenosides.

SELECTION OF CITATIONS
SEARCH DETAIL