Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
J Orthop Surg Res ; 19(1): 630, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375697

ABSTRACT

BACKGROUND: Our study aims to examine stress-strain data of the four major knee ligaments-the anterior cruciate ligament (ACL), the posterior cruciate ligament (PCL), the medial collateral ligament (MCL), and the lateral collateral ligament (LCL)-under transient impacts in various knee joint regions and directions within the static standing position of the human body. Subsequently, we will analyze the varying biomechanical properties of knee ligaments under distinct loading conditions. METHODS: A 3D simulation model of the human knee joint including bone, meniscus, articular cartilage, ligaments, and other tissues, was reconstructed from MRI images. A vertical load of 300 N was applied to the femur model's top surface to mimic the static standing position, and a 134 N load was applied to the impacted area of the knee joint. Nine scenarios were created to examine the effects of anterior, posterior, and lateral external forces on the upper, middle, and lower regions of the knee joint. RESULTS: The PCL exhibited the highest stress levels among the four ligaments when anterior loads were applied to the upper, middle, and lower parts of the knee, with maximum stresses at the PCL-fibula junction measuring 59.895 MPa, 27.481 MPa, and 28.607 MPa, respectively. Highest stresses on the PCL were observed under posterior loads on the upper, middle, and lower knee areas, with peak stresses of 57.421 MPa, 38.147 MPa, and 26.904 MPa, focusing notably on the PCL-tibia junction. When a lateral load was placed on the upper knee joint, the ACL showed the highest stress 32.102 MPa. Likewise, in a lateral impact on the middle knee joint, the ACL also had the highest stress of 29.544 MPa, with peak force at the ACL-tibia junction each time. In a lateral impact on the lower knee area, the LCL had the highest stress of 22.279 MPa, with the highest force at the LCL-fibula junction. Furthermore, the maximum stress data table indicates that stresses in the ligaments are typically higher when the upper portion of the knee is affected compared to when the middle and lower parts are impacted. CONCLUSIONS: This study recommends people avoid impacting the upper knee and use the middle and lower parts of the knee effectively against external forces to minimize ligament damage and safeguard the knee.


Subject(s)
Finite Element Analysis , Knee Joint , Humans , Biomechanical Phenomena , Knee Joint/diagnostic imaging , Knee Joint/physiology , Knee Joint/physiopathology , Stress, Mechanical , Standing Position , Ligaments, Articular/diagnostic imaging , Ligaments, Articular/physiopathology , Ligaments, Articular/injuries , Male , Posterior Cruciate Ligament/injuries , Posterior Cruciate Ligament/diagnostic imaging , Posterior Cruciate Ligament/physiology , Posterior Cruciate Ligament/physiopathology , Knee Injuries/physiopathology , Knee Injuries/diagnostic imaging , Weight-Bearing/physiology , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods
2.
J Clin Invest ; 134(18)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39286985

ABSTRACT

BACKGROUNDFrailty significantly affects morbidity and mortality rates in the older population (age >65 years). Age-related degenerative diseases are influenced by the intestinal microbiota. However, limited research exists on alterations in the intestinal microbiota in frail older individuals, and the effectiveness of prebiotic intervention for treating frailty remains uncertain.OBJECTIVEWe sought to examine the biological characteristics of the intestinal microbiome in frail older individuals and assess changes in both frailty status and gut microbiota following intervention with a prebiotic blend consisting of inulin and oligofructose.METHODSThe study consisted of 3 components: an observational analysis with a sample size of 1,693, a cross-sectional analysis (n = 300), and a multicenter double-blind, randomized, placebo-controlled trial (n = 200). Body composition, commonly used scales, biochemical markers, intestinal microbiota, and metabolites were examined in 3 groups of older individuals (nonfrail, prefrail, and frail). Subsequently, changes in these indicators were reevaluated after a 3-month intervention using the prebiotic mixture for the prefrail and frail groups.RESULTSThe intervention utilizing a combination of prebiotics significantly improved frailty and renal function among the older population, leading to notable increases in protein levels, body fat percentage, walking speed, and grip strength. Additionally, it stimulated an elevation in gut probiotic count and induced alterations in microbial metabolite expression levels as well as corresponding metabolic pathways.CONCLUSIONSThe findings suggest a potential link between changes in the gut microbiota and frailty in older adults. Prebiotics have the potential to modify the gut microbiota and metabolome, resulting in improved frailty status and prevention of its occurrence.TRIAL REGISTRATIONClinicalTrials.gov NCT03995342.


Subject(s)
Frail Elderly , Frailty , Gastrointestinal Microbiome , Prebiotics , Humans , Prebiotics/administration & dosage , Aged , Male , Double-Blind Method , Female , Aged, 80 and over , Independent Living , Oligosaccharides/administration & dosage , Inulin/administration & dosage , Cross-Sectional Studies
3.
Cardiovasc Diabetol ; 23(1): 318, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192249

ABSTRACT

BACKGROUND: Glucose metabolic disorder is associated with the risk of heart failure (HF). Adiposity is a comorbidity that is inextricably linked with abnormal glucose metabolism in older individuals. However, the effect of adiposity on the association between glucose metabolic disorder and HF risk, and the underlying mechanism remain unclear. METHODS: A total of 13,251 participants aged ≥ 60 years from a cohort study were categorized into euglycemia, prediabetes, uncontrolled diabetes, and well-controlled diabetes. Adiposity was assessed using body mass index (BMI), waist-to-hip ratio (WHR), and visceral fat area (VFA). Adiposity-associated metabolic activities were evaluated using adiponectin-to-leptin ratio (ALR), homeostatic model assessment of insulin resistance (HOMA-IR), and triglyceride-glucose index (TyG). The first occurrence of HF served as the outcome during the follow-up period. RESULTS: A total of 1,138 participants developed HF over the course of an average follow-up period of 10.9 years. The rate of incident HF occurrence was higher in prediabetes, uncontrolled diabetes, and well-controlled diabetes participants compared to that in euglycemia participants. However, the high rates were significantly attenuated by BMI, VFA, and WHR. For WHR in particular, the hazard ratio for incident HF was 1.18 (95% confidence interval (CI): 1.03, 1.35, Padj.=0.017) in prediabetes, 1.59 (95% CI: 1.34, 1.90, Padj.<0.001) in uncontrolled diabetes, and 1.10 (95% CI: 0.85, 1.43, Padj.=0.466) in well-controlled diabetes. The population attributable risk percentage for central obesity classified by WHR for incident HF was 30.3% in euglycemia, 50.0% in prediabetes, 48.5% in uncontrolled diabetes, and 54.4% in well-controlled diabetes. Adiposity measures, especially WHR, showed a significant interaction with glucose metabolic disorder in incident HF (all Padj.<0.001). ALR was negatively associated and HOMA-IR and TyG were positively associated with BMI, WHR, VFA, and incident HF (all Padj.<0.05). ALR, HOMA-IR, and TyG mediated the associations for BMI, WHR and VFA with incident HF (all Padj.<0.05). CONCLUSIONS: Adiposity attenuated the association of glucose metabolic disorder with incident HF. The results also showed that WHR may be an appropriate indicator for evaluating adiposity in older individuals. Adiposity-associated metabolic activities may have a bridging role in the process of adiposity attenuating the association between glucose metabolic disorder and incident HF. TRIAL REGISTRATION: retrospectively registered number: ChiCTR-EOC-17,013,598.


Subject(s)
Adiposity , Biomarkers , Blood Glucose , Heart Failure , Prediabetic State , Humans , Heart Failure/epidemiology , Heart Failure/diagnosis , Heart Failure/blood , Heart Failure/physiopathology , Male , Female , Aged , Prospective Studies , Middle Aged , Blood Glucose/metabolism , Risk Assessment , Incidence , Risk Factors , Biomarkers/blood , Prediabetic State/epidemiology , Prediabetic State/diagnosis , Prediabetic State/blood , Time Factors , Age Factors , Body Mass Index , Insulin Resistance , Waist-Hip Ratio , Obesity/epidemiology , Obesity/diagnosis , Obesity/blood , Obesity/physiopathology , Adiponectin/blood , Diabetes Mellitus/epidemiology , Diabetes Mellitus/diagnosis , Diabetes Mellitus/blood , Prognosis , Intra-Abdominal Fat/physiopathology , Intra-Abdominal Fat/metabolism , Leptin
4.
Environ Sci Pollut Res Int ; 31(36): 49141-49155, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39044055

ABSTRACT

In this study, we used 16S high-throughput sequencing to investigate the effects of uranium mining on the rhizospheric bacterial communities and functions of three local plant species, namely, Artemisia frigida, Acorus tatarionwii Schott., and Salix oritrepha Schneid. The results showed that uranium mining significantly reduced the diversity of rhizospheric bacteria in the three local plant species, including the Shannon index and Simpson index (P < 0.05). Interestingly, we found that Sphingomonas and Pseudotrichobacter were enriched in the rhizosphere soil of the three local plants from uranium mining areas, indicating their important ecological role. The three plants were enriched in various dominant rhizospheric bacterial populations in the uranium mining area, including Vicinamidobacteriaceae, Nocardioides, and Gaiella, which may be related to the unique microecological environment of the plant rhizosphere. The rhizospheric bacterial community of A. tatarionwii plants from tailings and open-pit mines also showed a certain degree of differentiation, indicating that uranium mining is the main factor driving the differentiation of plant rhizosphere soil communities on the plateau. Functional prediction revealed that rhizospheric bacteria from different plants have developed different functions to cope with stress caused by uranium mining activities, including enhancing the translational antagonist Rof, the translation initiation factor 2B subunit, etc. This study explores for the first time the impact of plateau uranium mining activities on the rhizosphere microecology of local plants, promoting the establishment of effective soil microecological health monitoring indicators, and providing a reference for further soil pollution remediation in plateau uranium mining areas.


Subject(s)
Mining , Rhizosphere , Soil Microbiology , Uranium , Tibet , Bacteria/classification
5.
Food Sci Nutr ; 12(6): 4473-4485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873460

ABSTRACT

Quinoa is a nutrient-dense pseudocereal that has garnered global attention for its potential to bolster food security and nutrition. Despite its celebrated status, the detailed nutritional profiles of various quinoa varieties remain poorly understood, which poses a significant barrier to the strategic cultivation and utilization of quinoa's genetic diversity to combat malnutrition. The impetus for this research lies in the urgent need to identify superior quinoa strains that can be tailored to meet specific nutritional requirements and adapt to diverse agro-ecological zones. Our findings reveal substantial variation in nutrient content across different quinoa varieties, highlighting the variety ZLZX-8 as a particularly nutrient-rich strain with the highest levels of protein, fat, essential fatty acids, amino acids, and key minerals such as Mg, K, and Zn. Moreover, ZLZX-8's exceptional antioxidant capacity suggests it may have additional health benefits beyond its macronutrient profile. In contrast, ZLZX-7 stands out for its dietary fiber and phenolic content, which are critical for digestive health and disease prevention, respectively. Meanwhile, ZLZX-5, with its high starch content, could be better suited for energy production in dietary applications. Notably, the study also uncovers a correlation between grain color and nutrient profile, with colored quinoa varieties exhibiting superior fiber, inositol, phenolic content, and antioxidant activity compared to their white counterparts. This work lays the groundwork for an informed selection of quinoa varieties that can enhance dietary quality, support local and global food systems, and contribute to the fight against malnutrition.

6.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38865489

ABSTRACT

Low level of drip loss (DL) is an important quality characteristic of meat with high economic value. However, the key genes and regulatory networks contributing to DL in pork remain largely unknown. To accurately identify the key genes affecting DL in muscles postmortem, 12 Duroc × (Landrace × Yorkshire) pigs with extremely high (n = 6, H group) and low (n = 6, L group) DL at both 24 and 48 h postmortem were selected for transcriptome sequencing. The analysis of differentially expressed genes and weighted gene co-expression network analysis (WGCNA) were performed to find the overlapping genes using the transcriptome data, and functional enrichment and protein-protein interaction (PPI) network analysis were conducted using the overlapping genes. Moreover, we used machine learning to identify the key genes and regulatory networks related to DL based on the interactive genes of the PPI network. Finally, nine potential key genes (IRS1, ESR1, HSPA6, INSR, SPOP, MSTN, LGALS4, MYLK2, and FRMD4B) mainly associated with the MAPK signaling pathway, the insulin signaling pathway, and the calcium signaling pathway were identified, and a single-gene set enrichment analysis (GSEA) was performed to further annotate the functions of these potential key genes. The GSEA results showed that these genes are mainly related to ubiquitin-mediated proteolysis and oxidative reactions. Taken together, our results indicate that the potential key genes influencing DL are mainly related to insulin signaling mediated differences in glycolysis and ubiquitin-mediated changes in muscle structure and improve the understanding of gene expression and regulation related to DL and contribute to future molecular breeding for improving pork quality.


A low level of drip loss (DL) is critical for the economic value of pork. However, the genetic basis underlying DL remains unclear. In this study, pigs with extremely high and low DL at both 24 and 48 h postmortem were selected, and total RNA from longissimus dorsi (LD) muscles was extracted for transcriptome sequencing. Subsequently, a variety of analytical methods, were integrated to identify the potential key genes and pathways affecting DL. As a result, nine potential key genes (IRS1, ESR1, HSPA6, INSR, SPOP, MSTN, LGALS4, MYLK2, and FRMD4B) mainly associated with the MAPK signaling pathway, insulin signaling pathway, and calcium signaling pathway, were identified, and these genes are primarily related to ubiquitin-mediated proteolysis and oxidation reactions. This study contributes new evidence for elucidating the molecular mechanism of DL and provides potential target genes for precise genetic improvement of DL.


Subject(s)
Gene Regulatory Networks , Machine Learning , Transcriptome , Animals , Swine/genetics , Gene Expression Profiling , Protein Interaction Maps
7.
Cells ; 13(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38667318

ABSTRACT

Muscle satellite cells (MuSCs) are crucial for muscle development and regeneration. The primary pig MuSCs (pMuSCs) is an ideal in vitro cell model for studying the pig's muscle development and differentiation. However, the long-term in vitro culture of pMuSCs results in the gradual loss of their stemness, thereby limiting their application. To address this conundrum and maintain the normal function of pMuSCs during in vitro passaging, we generated an immortalized pMuSCs (SV40 T-pMuSCs) by stably expressing SV40 T-antigen (SV40 T) using a lentiviral-based vector system. The SV40 T-pMuSCs can be stably sub-cultured for over 40 generations in vitro. An evaluation of SV40 T-pMuSCs was conducted through immunofluorescence staining, quantitative real-time PCR, EdU assay, and SA-ß-gal activity. Their proliferation capacity was similar to that of primary pMuSCs at passage 1, and while their differentiation potential was slightly decreased. SiRNA-mediated interference of SV40 T-antigen expression restored the differentiation capability of SV40 T-pMuSCs. Taken together, our results provide a valuable tool for studying pig skeletal muscle development and differentiation.


Subject(s)
Antigens, Polyomavirus Transforming , Cell Differentiation , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Swine , Antigens, Polyomavirus Transforming/metabolism , Antigens, Polyomavirus Transforming/genetics , Cell Proliferation , Muscle Development , Antigens, Viral, Tumor/metabolism , Antigens, Viral, Tumor/genetics , Simian virus 40/genetics
8.
Anim Genet ; 55(3): 471-474, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38618678

ABSTRACT

This work aimed to identify markers and candidate genes underlying porcine digestive traits. In total, 331 pigs were genotyped by 80 K Chip data or 50 K Chip data. For apparent neutral detergent fiber digestibility, a total of 19 and 21 candidate single nucleotide polymorphisms (SNP) were respectively identified using a genome-wide efficient mixed-model association algorithm and linkage-disequilibrium adjusted kinship. Among them, three quantitative trait locus (QTL) regions were identified. For apparent acid detergent fiber digestibility, a total of 16 and 17 SNPs were identified by these two methods, respectively. Of these, three QTL regions were also identified. Moreover, two candidate genes (MST1 and LATS1), which are functionally related to intestinal homeostasis and health, were detected near these significant SNPs. Taken together, our results could provide a basis for deeper research on digestive traits in pigs.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sus scrofa , Animals , Sus scrofa/genetics , Genome-Wide Association Study/veterinary , Digestion/genetics , Linkage Disequilibrium , Genotype
9.
Front Genet ; 15: 1351429, 2024.
Article in English | MEDLINE | ID: mdl-38415055

ABSTRACT

Introduction: Intramuscular fat content (IFC) and meat color are vital indicators of pork quality. Methods: A significant positive correlation between IFC and redness of meat color (CIE a* value) indicates that these two traits are likely to be regulated by shared molecular pathways.To identify candidate genes, hub genes, and signaling pathways that regulate these two traits, we measured the IFC and CIE a* value in 147 hybrid pigs, and selected individuls with extreme phenotypes for transcriptome analysis. Results: The results revealed 485 and 394 overlapping differentially expressed genes (DEGs), using the DESeq2, limma, and edgeR packages, affecting the IFC and CIE a* value, respectively. Weighted gene co-expression network analysis (WGCNA) identified four modules significantly correlated with the IFC and CIE a* value. Moreover, we integrated functional enrichment analysis results based on DEGs, GSEA, and WGCNA conditions to identify candidate genes, and identified 47 and 53 candidate genes affecting the IFC and CIE a* value, respectively. The protein protein interaction (PPI) network analysis of candidate genes showed that 5 and 13 hub genes affect the IFC and CIE a* value, respectively. These genes mainly participate in various pathways related to lipid metabolism and redox reactions. Notably, four crucial hub genes (MYC, SOX9, CEBPB, and PPAGRC1A) were shared for these two traits. Discussion and conclusion: After functional annotation of these four hub genes, we hypothesized that the SOX9/CEBPB/PPARGC1A axis could co-regulate lipid metabolism and the myoglobin redox response. Further research on these hub genes, especially the SOX9/CEBPB/PPARGC1A axis, will help to understand the molecular mechanism of the co-regulation of the IFC and CIE a* value, which will provide a theoretical basis for improving pork quality.

10.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256277

ABSTRACT

The introduction of single-cell RNA sequencing (scRNA-seq) technology has spurred additional advancements in analyzing the cellular composition of tissues. The longissimus dorsi (LD) in pigs serves as the primary skeletal muscle for studying meat quality in the pig industry. However, the single-cell profile of porcine LD is still in its infancy stage. In this study, we profiled the transcriptomes of 16,018 cells in the LD of a newborn Suhuai pig at single-cell resolution. Subsequently, we constructed a cellular atlas of the LD, identifying 11 distinct cell populations, including endothelial cells (24.39%), myotubes (18.82%), fibro-adipogenic progenitors (FAPs, 18.11%), satellite cells (16.74%), myoblasts (3.99%), myocytes (5.74%), Schwann cells (3.81%), smooth muscle cells (3.22%), dendritic cells (2.99%), pericytes (1.86%), and neutrophils (0.33%). CellChat was employed to deduce the cell-cell interactions by evaluating the gene expression of receptor-ligand pairs across different cell types. The results show that FAPs and pericytes are the primary signal contributors in LD. In addition, we delineated the developmental trajectory of myogenic cells and examined alterations in the expression of various marker genes and molecular events throughout various stages of differentiation. Moreover, we found that FAPs can be divided into three subclusters (NR2F2-FAPs, LPL-FAPs, and TNMD-FAPs) according to their biological functions, suggesting that the FAPs could be associated with the differentiation of tendon cell. Taken together, we constructed the cellular atlas and cell communication network in LD of a newborn Suhuai pig, and analyzed the developmental trajectory of myogenic cells and the heterogeneity of FAPs subpopulation cells. This enhances our comprehension of the molecular features involved in skeletal muscle development and the meat quality control in pigs.


Subject(s)
Endothelial Cells , Muscle Fibers, Skeletal , Swine , Animals , Cell Differentiation , Pericytes , Sequence Analysis, RNA
11.
BMC Genomics ; 24(1): 733, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049711

ABSTRACT

BACKGROUND: Eurasian pigs have undergone lineage admixture throughout history. It has been confirmed that the genes of indigenous pig breeds in China have been introduced into Western commercial pigs, providing genetic materials for breeding Western pigs. Pigs in Taihu Lake region (TL), such as the Meishan pig and Erhualian pig, serve as typical representatives of indigenous pig breeds in China due to their high reproductive performances. These pigs have also been imported into European countries in 1970 and 1980 s. They have played a positive role in improving the reproductive performances in European commercial pigs such as French Large White pigs (FLW). However, it is currently unclear if the lineage of TL pigs have been introgressed into the Danish Large White pigs (DLW), which are also known for their high reproductive performances in European pigs. To systematically identify genomic regions in which TL pigs have introgressed into DLW pigs and their physiological functions, we collected the re-sequencing data from 304 Eurasian pigs, to identify shared haplotypes between DLW and TL pigs. RESULTS: The findings revealed the presence of introgressed genomic regions from TL pigs in the genome of DLW pigs indeed. The genes annotated within these regions were found to be mainly enriched in neurodevelopmental pathways. Furthermore, we found that the 115 kb region located in SSC16 exhibited highly shared haplotypes between TL and DLW pigs. The major haplotype of TL pigs in this region could significantly improve reproductive performances in various pig populations. Around this genomic region, NDUFS4 gene was highly expressed and showed differential expression in multiple reproductive tissues between extremely high and low farrowing Erhualian pigs. This suggested that NDUFS4 gene could be an important candidate causal gene responsible for affecting the reproductive performances of DLW pigs. CONCLUSIONS: Our study has furthered our knowledge of the pattern of introgression from TL into DLW pigs and the potential effects on the fertility of DLW pigs.


Subject(s)
Lakes , Sus scrofa , Swine/genetics , Animals , Sus scrofa/genetics , Genome , Fertility/genetics , Polymorphism, Single Nucleotide , Denmark
12.
Microorganisms ; 11(10)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37894132

ABSTRACT

To evaluate the tolerance of a high-fiber diet in Erhualian pigs (Er-HL), the present investigation systematically investigated the ramifications of varying wheat bran fiber levels, specified as total dietary fiber (TDF) values of 14.07%, 16.32%, 17.99%, and 18.85%, on growth performance, fiber digestibility and gut microbiota in Er-HL, large Large White pigs (L-LW, the same physiological stage as the Er-HL) and small Large White pigs (S-LW, the same body weight as the Er-HL). Our results revealed that fiber levels exerted no discernable impact on growth performance (average daily feed intake (ADFI), and average daily gain (ADG)) of Er-HL (p > 0.05). Conversely, L-LW exhibited a decrease in ADFI and ADG with increasing fiber levels (p < 0.05). Notably, the apparent total tract digestibility (ATTD) of various fiber components, including neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, TDF and insoluble dietary fiber (IDF), in Er-HL were significantly higher than those in S-LW and L-LW irrespective of diets (p < 0.05). The ATTD of cellulose and hemicellulose in Er-HL significantly decreased with increasing fiber levels (p < 0.05), yet remained statistically indifferent when comparing the 7%-wheat-bran-replaced diet (7% WRB, TDF 16.32%) to the basal diet (TDF 14.07%) (p > 0.05). The cecal microbiota of Er-HL had higher richness estimators (Chao1 and ACE) than those of S-LW and L-LW irrespective of diets (p < 0.01). Breed serves as a pivotal determinant in shaping swine gut microbiota. Thirteen genera were selected as the key bacteria related to high fiber digestibility of Er-HL. Further functional examination of these key genera elucidated an enrichment of pathways pertinent to carbohydrate metabolism in Er-HL samples compared with S-LW and L-LW samples. In summary, Er-HL exhibited high-fiber tolerance both in terms of growth performance and fiber digestibility compared with Large White pigs. Specifically, the ATTD of NDF, ADF, hemicellulose, IDF and TDF were significantly higher in Er-HL compared with L-LW and S-LW, irrespective of diets. Fiber level exerted no discernable impact on growth performance (ADFI, ADG) and the ATTD of fiber (NDF, ADF, IDF and TDF) in Er-HL. The optimum fiber level of the Er-HL was identified as 7% WRB (TDF 16.32%). Thirteen genera were ascertained to significantly contribute to high fiber digestibility of Er-HL, correlating with an enhancement of carbohydrate metabolism pathways.

13.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37703114

ABSTRACT

The high-fertility Meishan pig is currently categorized into medium sized (MMS) and small sized (SMS) based on body size. To identify causal genes responsible for the variation in body size within the two categories, we sequenced individuals representing the entire consanguinity of the existing Meishan pig. This enabled us to conduct genome selective signal analysis. Our findings revealed the genomes of MMS and SMS are stratified, with selective sweep regions formed by differential genomic intervals between the two categories enriched in multiple pig body size related quantitative trait loci (QTLs). Furthermore, the missense mutation c.575T > C of candidate causal gene NR6A1, accounting for the variation in lumbar vertebrae number in pigs, was positively selected in MMS only, leading to an increase in body length of MMS at 6 months of age. To precisely identify causal genes accounting for body size variation through multi-omics, we collected femoral cartilage and liver transcription data from MMS and SMS respectively, and re-sequencing data from pig breeds exhibiting varying body sizes. We found that two selected regions where the RSAD2-CMPK2 and COL3A1 genes are located, respectively, showed different haplotypes in pig breeds of varying body size, and was associated with body or carcass length in hybridized Suhuai pig. Additionally, the above three hub genes, were significantly greater expressed in SMS femoral cartilage and liver tissues compared to MMS. These three genes could strengthen the pathways related to bone resorption and metabolism in SMS, potentially hindering bone and skeletal development and resulting in a smaller body size in SMS. These findings provide valuable insights into the genetic mechanism of body size variation in Meishan pig population.


The existing well-known Meishan pig population has been categorized into medium sized (MMS), and small sized (SMS) based on body size, which is a result of artificial selection. MMS is relatively large in all body size traits, but otherwise have highly similar appearance and performance traits. To effectively identify the candidate selected genes that contribute to the body size variation in Meishan pigs, this study collected individuals from all lineages of MMS and SMS for re-sequencing. Additionally, femoral cartilage and liver transcription data were collected from MMS and SMS, respectively, and re-sequencing data from pig breeds exhibiting varying body sizes were also analyzed. Through multi-omics analysis, it was discovered that the missense mutation c.575T > C in the candidate causal gene NR6A1 was positively selected in MMS only, leading to an increase in the body length of MMS at 6 months of age. Moreover, the selected genes RSAD2-CMPK2 and COL3A1 were found to be significantly greater expressed in SMS femoral cartilage and liver tissues compared with MMS. These genes could potentially strengthen bone resorption and metabolism-related pathways in SMS. These findings contribute to a better understanding of the genetic mechanisms underlying body size variation in Meishan pigs and Chinese indigenous pigs.


Subject(s)
Collagen Type III , Nuclear Receptor Subfamily 6, Group A, Member 1 , Nucleoside-Phosphate Kinase , Oxidoreductases Acting on CH-CH Group Donors , Quantitative Trait Loci , Viperin Protein , Animals , Base Sequence , Body Size/genetics , Collagen Type III/genetics , Haplotypes , Nuclear Receptor Subfamily 6, Group A, Member 1/genetics , Swine/genetics , Viperin Protein/genetics , Sus scrofa , Nucleoside-Phosphate Kinase/genetics
14.
Int J Gen Med ; 16: 3179-3192, 2023.
Article in English | MEDLINE | ID: mdl-37533839

ABSTRACT

Purpose: Fall is a common geriatric syndrome leading to various adverse outcomes in the elderly. Gait and balance disorders and decreased lower extremity muscle function are the major intrinsic risk factors of falls, and studies suggested that they were closely related to the underlying chronic conditions. This study aimed to explore the patterns of multimorbidity and determine the associations of these multimorbidity patterns with gait, balance and lower extremity muscle function. Patients and Methods: A cross-sectional survey of 4803 participants aged ≥60 years in Shaanxi Province, China was conducted and the self-reported chronic conditions were investigated. The 6-m walk test, timed-up-and-go test (TUG) and 5-sit-to-stand test (5-STS) were conducted to evaluate gait, balance, and lower extremity muscle function respectively. Latent class analysis was used to explore patterns of multimorbidity, and multivariate regression analysis was used to determine the associations of multimorbidity patterns with gait, balance, and lower extremity muscle function. Results: Five multimorbidity patterns were identified: Degenerative Disease Class, Cardio-metabolic Class, Stroke-Respiratory-Depression Class, Gastrointestinal Class, and Very sick Class, and they were differently associated with gait and balance disorders and decreased lower extremity muscle function. In particular, the multimorbidity patterns of Degenerative Disease Class and Stroke-Respiratory-Depression Class were closely associated with all the three risk factors of falls. Conclusion: There are significant differences in the impact of different multimorbidity patterns on the major intrinsic risk factors of falls in the elderly population, and appropriate multimorbidity patterns are closely related to the prediction of falls and can help to develop fall prevention strategies in the elderly.

15.
Theriogenology ; 211: 49-55, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37572600

ABSTRACT

Zearalenone (ZEA) is a prevalent mycotoxin functions as an endocrine disrupter to the reproductive systems of farm animals, especially in pigs. To evaluate the effect and the underlying molecular changes that occurred when the porcine germline stem cells were exposed to ZEA, prospermatogonia (ProSGs) were enriched and treated with a gradient concentration (0-10 µM) of ZEA for 2-8 days. Our results showed that the ZEA treatment inhibited the proliferation of ProSGs in a dose-dependent manner with a critical concentration at 1 µM. Transcriptome analysis revealed that the differentially expressed genes mainly concentrated on the molecular function of positive regulation of response to stimulus, and the most enriching pathway is cytokine-cytokine receptor interaction. ZEA exposure decreased a buck of cytokine/chemokine expression involved in the inflammatory response and stem cells maintenance/self-renewal, moreover, some energy expenditure and anti-apoptosis genes were also down-regulated, while the up-regulated genes were mainly connected with the innate immunity. These data demonstrate that ZEA induces multiply cellular damage and may eventually do harm to the health and fertility of animals.


Subject(s)
Mycotoxins , Zearalenone , Swine , Animals , Zearalenone/toxicity , Cytokines/genetics , Gene Expression Profiling/veterinary , Mycotoxins/pharmacology , Cell Proliferation
16.
Clin Exp Hypertens ; 45(1): 2253381, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37652577

ABSTRACT

BACKGROUND: The impacts and mechanisms of morning hypertension (MHT) on the risk of new-onset atrial fibrillation (AF) in the elderly have not been clarified. We aimed to investigate an association between MHT and new-onset AF and explore a mediating effect of subclinical inflammation on this association. METHODS: From 2008 to 2010, 1789 older adults aged ≥60 years were recruited in Shandong area, China. Morning blood pressure (BP) was assessed using 24-hour ambulatory BP monitoring. MHT was defined as BP ≥ 135/85 mm Hg during the period from wake time to 0900 a.m. Subclinical inflammation was assessed by hypersensitive C-reactive protein (hsCRP), tumor necrosis factor-alpha (TNF-α), systemic immune-inflammation index (SII), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and galectin-3. New-onset AF was rated during the follow-up period. RESULTS: Over an average 129.0 [standard deviation (SD): 21.58] months of follow-up, the hazard ratio of new-onset AF in MHT patients was 1.39 (95% confidence interval: 1.01 to 1.91) compared with non-MHT participants (Padjusted = 0.027). The risk of new-onset AF was 1.17-fold with one-SD increment of morning systolic BP. Subclinical inflammation was significantly associated with new-onset AF. The hazard ratios of new-onset AF were 2.29, 2.04, 2.08, 2.08, 2.03, and 3.25 for one-SD increment in hsCRP, TNF-α, SII, NLR, PLR, and galectin-3, respectively (Padjusted < 0.001). The analysis showed that hsCRP, TNF-α, SII, NLR, PLR, and galectin-3 separately mediated the process of MHT inducing new-onset AF (Padjusted < 0.05). CONCLUSIONS: MHT is associated with an increased risk of new-onset AF. The subclinical inflammation might play a mediating role in this association.


Subject(s)
Atrial Fibrillation , Hypertension , Aged , Humans , Atrial Fibrillation/epidemiology , Atrial Fibrillation/etiology , C-Reactive Protein , Galectin 3 , Tumor Necrosis Factor-alpha , Inflammation/complications , Hypertension/complications
17.
Front Cell Infect Microbiol ; 13: 1151557, 2023.
Article in English | MEDLINE | ID: mdl-37180438

ABSTRACT

Non-small cell lung cancer (NSCLC) is one of the most serious diseases affecting human health today, and current research is focusing on gut flora. There is a correlation between intestinal flora imbalance and lung cancer, but the specific mechanism is not clear. Based on the "lung and large intestine being interior-exteriorly related" and the "lung-intestinal axis" theory. Here, based on the theoretical comparisons of Chinese and western medicine, we summarized the regulation of intestinal flora in NSCLC by active ingredients of traditional Chinese medicine and Chinese herbal compounds and their intervention effects, which is conducive to providing new strategies and ideas for clinical prevention and treatment of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Lung Neoplasms , Humans , Medicine, Chinese Traditional , Carcinoma, Non-Small-Cell Lung/drug therapy , Drugs, Chinese Herbal/therapeutic use
18.
Anim Genet ; 54(4): 435-445, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36911996

ABSTRACT

The number of ribs (NR) and carcass length (CL) are important economic traits in pig breeding programs. Pigs with a higher NR and longer CL produce greater pork yields. In the present study, Suhuai pigs with NR and CL phenotypes were genotyped using the Neogen® GGP Porcine 80 K SNP array to identify the QTL affecting NR and CL and dissect the candidate genes for the two traits. The SNP-chip data was imputed to the whole-genome sequence (iWGS) to increase the probability of identifying causal variants. Through genome-wide association studies (GWAS) based on both chip and iWGS data, significant SNPs were detected on Sus scrofa chromosome (SSC) 1, SSC4 and SSC7 for NR and on SSC5, SSC16 and SSC17 for CL. Moreover, two SNPs (H3GA0022644 and WU_10.2_7_103460706) on SSC7 detected in chip-based GWAS were significantly associated with both NR and CL. Through Bayes fine mapping, one reported QTL for NR on SSC7 and two reported QTL for CL on SSC17 were verified, and two new QTL (SSC1: 14.05-15.84 Mb and SSC4: 64.83-66.59 Mb) affecting NR and two new QTL (SSC5: 58.31-59.84 Mb and SSC16: 22.98-23.43 Mb) affecting CL were detected. According to the biological functions of genes, MTHFD1L on SSC1 and SULF1 on SSC4 are novel functional candidate genes for NR, and EMP1 on SSC5 and EGFLAM on SSC16 are novel functional candidate genes for CL. Overall, our findings provide a basis for identifying new causal genes and mutations affecting NR and CL.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Animals , Swine/genetics , Genome-Wide Association Study/veterinary , Bayes Theorem , Genotype , Phenotype , Ribs , Polymorphism, Single Nucleotide , Sus scrofa/genetics
19.
Anim Genet ; 54(3): 295-306, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36727217

ABSTRACT

Meat color is an attractive trait that influences consumers' purchase decisions at the point of sale. To decipher the genetic basis of meat color traits, we performed a genome-wide association study based on low-coverage whole-genome sequencing. In total, 669 (Pietrain × Duroc) × (Landrace × Yorkshire) pigs were genotyped using low-coverage whole-genome sequencing. Single nucleotide polymorphism (SNP) calling and genotype imputation were performed using the BaseVar + STITCH channel. Six individuals with an average depth of 12.05× whole-genome resequencing were randomly selected to assess the accuracy of imputation. Heritability evaluation and genome-wide association study for meat color traits were conducted. Functional enrichment analysis of the candidate genes from genome-wide association study and integration analysis with our previous transcriptome data were conducted. The imputation accuracy parameters, allele frequency R2 , concordance rate, and dosage R2 were 0.959, 0.952, and 0.933, respectively. The heritability values of a*45 min , b*45 min , L*45 min , C*, and H0 were 0.19, 0.11, 0.06, 0.16, and 0.26, respectively. In total, 3884 significant SNPs and 15 QTL, corresponding to 382 genes, were associated with meat color traits. Functional enrichment analysis revealed that 10 genes were the potential candidates for regulating meat color. Moreover, integration analysis revealed that DMRT2, EFNA5, FGF10, and COL11A2 were the most promising candidates affecting meat color. In summary, this study provides new insights into the molecular basis of meat color traits, and provides a new theoretical basis for the molecular breeding of meat color traits in pigs.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Swine , Animals , Meat/analysis , Genotype , Phenotype , Polymorphism, Single Nucleotide , Gene Expression Profiling , Whole Genome Sequencing
20.
mSystems ; 8(1): e0093722, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36511688

ABSTRACT

Previous study found that appropriate high-fiber diet (containing 19.10% total dietary fiber [TDF], treatment II) did not reduce apparent fiber digestibility of Chinese Suhuai finishing pigs and increased the yield of short-chain fatty acids (SCFAs), but too high-fiber diet (containing 24.11% TDF, treatment IV) significantly reduced apparent fiber digestibility compared with normal diet (containing 16.70% TDF, control group). However, characteristics of microbiota at the species level and histological structure in pigs with the ability to digest appropriate high-fiber diets were still unknown. This study conducted comparative analysis of cecal physiology and microbial populations colonizing cecal mucosa. The results showed intestinal development indexes including cecum length, densities of cecal goblet cells, and renewal of cecal epithelial cells in treatment II and IV had better performance than those in the control. Paludibacter jiangxiensis, Coprobacter fastidiosus, Bacteroides coprocola CAG:162, Bacteroides barnesiae, and Parabacteroides merdae enriched in treatment II expressed large number of glycoside hydrolase (GH)-encoding genes and had the largest number of GH families. In addition, pathogenic bacteria (Shigella sonnei, Mannheimia haemolytica, and Helicobacter felis) were enriched in treatment IV. Correlation analysis revealed that the intestinal development index positively correlated with the relative abundance of cecal mucosal microbiota and the amount of digested fiber. These results indicated that increased proportions of fiber-degrading microbes and enhanced intestinal development jointly promote the host to digest an appropriate high-fiber diet. However, although too-high fiber levels in diet could maintain the adaptive development of cecal epithelium, the proportions of pathogenic bacteria increased, which might lead to a decrease of fiber digestion in pigs. IMPORTANCE Although studies about the effects of dietary fiber on fiber digestion and intestinal microbiota of pigs were widely in progress, few studies have been conducted on the dynamic response of intestinal microbiota to dietary fiber levels, and the characteristics of intestinal microbiota and intestinal epithelial development adapted to high-fiber diet s were still unclear. Appropriate high fiber promoted the thickness of large intestine wall, increased the density of cecal goblet cells, and promoted the renewal of cecal epithelial cells. In addition, appropriate high fiber improves the microbial abundance with fiber-digesting potential. However, excessive dietary fiber caused an increase in the abundance of pathogenic bacteria. These results indicated that an increased proportion of fiber-degrading microbes and enhanced intestinal development jointly promote host to digest appropriate high-fiber diets. However, although too-high fiber levels in diet could maintain the adaptive development of cecal epithelium, the proportions of pathogenic bacteria increased, which might lead to a decrease of fiber digestion in pigs. Our data provided a theoretical basis for rational and efficient utilization of unconventional feed resources in pig production.


Subject(s)
Cecum , Digestion , Swine , Animals , Diet/veterinary , Dietary Fiber/pharmacology , Intestinal Mucosa
SELECTION OF CITATIONS
SEARCH DETAIL