Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
J Am Chem Soc ; 139(19): 6534-6537, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28463498

ABSTRACT

The conformational analysis of glycosidases affords a route to their specific inhibition through transition-state mimicry. Inspired by the rapid reaction rates of cyclophellitol and cyclophellitol aziridine-both covalent retaining ß-glucosidase inhibitors-we postulated that the corresponding carba "cyclopropyl" analogue would be a potent retaining ß-glucosidase inhibitor for those enzymes reacting through the 4H3 transition-state conformation. Ab initio metadynamics simulations of the conformational free energy landscape for the cyclopropyl inhibitors show a strong bias for the 4H3 conformation, and carba-cyclophellitol, with an N-(4-azidobutyl)carboxamide moiety, proved to be a potent inhibitor (Ki = 8.2 nM) of the Thermotoga maritima TmGH1 ß-glucosidase. 3-D structural analysis and comparison with unreacted epoxides show that this compound indeed binds in the 4H3 conformation, suggesting that conformational strain induced through a cyclopropyl unit may add to the armory of tight-binding inhibitor designs.


Subject(s)
Cyclohexanols/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Glucosidases/metabolism , Cyclohexanols/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Models, Molecular , Molecular Structure , Quantum Theory , Thermotoga maritima/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL