Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
BMC Bioinformatics ; 16: 117, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25888019

ABSTRACT

BACKGROUND: Unsupervised analyses such as clustering are the essential tools required to interpret time-series expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression data. Early methods such as k-means, hierarchical clustering, and self-organizing maps are popular for their simplicity. However, because of noise and uncertainty of measurement, these common algorithms have low accuracy. Moreover, because gene expression is a temporal process, the relationship between successive time points should be considered in the analyses. In addition, biological processes are generally continuous; therefore, the datasets collected from time series experiments are often found to have an insufficient number of data points and, as a result, compensation for missing data can also be an issue. RESULTS: An affinity propagation-based clustering algorithm for time-series gene expression data is proposed. The algorithm explores the relationship between genes using a sliding-window mechanism to extract a large number of features. In addition, the time-course datasets are resampled with spline interpolation to predict the unobserved values. Finally, a consensus process is applied to enhance the robustness of the method. Some real gene expression datasets were analyzed to demonstrate the accuracy and efficiency of the algorithm. CONCLUSION: The proposed algorithm has benefitted from the use of cubic B-splines interpolation, sliding-window, affinity propagation, gene relativity graph, and a consensus process, and, as a result, provides both appropriate and effective clustering of time-series gene expression data. The proposed method was tested with gene expression data from the Yeast galactose dataset, the Yeast cell-cycle dataset (Y5), and the Yeast sporulation dataset, and the results illustrated the relationships between the expressed genes, which may give some insights into the biological processes involved.


Subject(s)
Algorithms , Computer Graphics , Gene Expression Profiling/methods , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Cell Cycle/physiology , Cluster Analysis , Consensus Sequence , Galactose/metabolism , Oligonucleotide Array Sequence Analysis/methods , Spores, Fungal/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL