Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
Nanoscale Adv ; 6(12): 2993-3008, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38868817

ABSTRACT

Peptides are a class of active substances composed of a variety of amino acids with special physiological functions. The rational design of peptide sequences at the molecular level enables their folding into diverse secondary structures. This property has garnered significant attention in the biomedical sphere owing to their favorable biocompatibility, adaptable mechanical traits, and exceptional loading capabilities. Concurrently with advancements in modern medicine, the diagnosis and treatment of tumors have increasingly embraced targeted and personalized approaches. This review explores recent applications of self-assembled peptides derived from natural amino acids in chemical therapy, immunotherapy, and other adjunctive treatments. We highlighted the utilization of peptide hydrogels as delivery systems for chemotherapeutic drugs and other bioactive molecules and then discussed the challenges and prospects for their future application.

2.
J Control Release ; 371: 429-444, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849096

ABSTRACT

Protein-based nanoparticles have garnered significant attention in theranostic applications due to their superior biocompatibility, exceptional biodegradability and ease of functionality. Compared to other nanocarriers, protein-based nanoparticles offer additional advantages, including biofunctionality and precise molecular recognition abilities, which make them highly effective in navigating complex biological environments. Moreover, proteins can serve as powerful tools with self-assembling structures and reagents that enhance cell penetration. And their derivation from abundant renewable sources and ability to degrade into harmless amino acids further enhance their suitability for biomedical applications. However, protein-based nanoparticles have so far not realized their full potential. In this review, we summarize recent advances in the use of protein nanoparticles in tumor diagnosis and treatment and outline typical methods for preparing protein nanoparticles. The review of protein nanoparticles may provide useful new insights into the development of biomaterial fabrication.


Subject(s)
Drug Delivery Systems , Nanoparticles , Neoplasms , Proteins , Theranostic Nanomedicine , Humans , Neoplasms/drug therapy , Theranostic Nanomedicine/methods , Nanoparticles/chemistry , Animals , Proteins/administration & dosage , Proteins/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry
3.
Biotechnol Bioeng ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822747

ABSTRACT

D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin ( l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin ( d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.

4.
Int J Biol Macromol ; 273(Pt 1): 133043, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857728

ABSTRACT

Water pollution is one of serious environmental issues due to the rapid development of industrial and agricultural sectors, and clean water resources have been receiving increasing attention. Recently, more and more studies have witnessed significant development of catalysts (metal oxides, metal sulfides, metal-organic frameworks, zero-valent metal, etc.) for wastewater treatment and water purification. Sustainable and clean catalysts immobilized into chitosan-based materials (Cat@CSbMs) are considered one of the most appealing subclasses of functional materials due to their high catalytic activity, high adsorption capacities, non-toxicity and relative stability. This review provides a summary of various upgrading renewable Cat@CSbMs (such as cocatalyst, photocatalyst, and Fenton-like reagent, etc.). As for engineering applications, further researches of Cat@CSbMs should focus on treating complex wastewater containing both heavy metals and organic pollutants, as well as developing continuous flow treatment methods for industrial wastewater using Cat@CSbMs. In conclusion, this review abridges the gap between different approaches for upgrading renewable and clean Cat@CSbMs and their future applications. This will contribute to the development of cleaner and sustainable Cat@CSbMs for wastewater treatment and water purification.


Subject(s)
Chitosan , Wastewater , Water Pollutants, Chemical , Water Purification , Chitosan/chemistry , Water Purification/methods , Catalysis , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification
5.
Insect Sci ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844429

ABSTRACT

Psocodean species are emerging as significant sanitary and stored-product pests, posing threats to human health and global food security. Out of an estimated 10 000 species, the whole genome sequences of only 4 species have been published. Genomic resources are crucial for establishing effective pest control and enhancing our understanding of the evolution of psocodean species. In this study, we employed Illumina and PacBio sequencing along with Hi-C scaffolding techniques to generate a chromosome-level genome assembly for the parthenogenetic booklouse Liposcelis bostrychophila. The assembled genome of this booklouse measures 291.67 Mb in length and comprises 9 chromosomes. Notably, the genome of L. bostrychophila exhibits a high level of heterozygosity and features a distinctive nonhomologous chromosome. This heterozygous characteristic of the parthenogenetic booklouse genome may arise from high mutation rates, based on genomic variations analysis across multiple generations. Our analysis revealed significantly expanded gene families, primarily associated with the detoxification and feeding habits of L. bostrychophila. These include integument esterases (ESTs), ATP-binding cassette (ABC) transporter genes and gustatory receptors (GRs). The high-quality genome sequence of L. bostrychophila provides valuable resources for further study on the molecular mechanisms of stress resistance. It enables researchers to identify crucial functional genes and facilitates research on the population genetics, evolution and phylogeny of booklice.

6.
Phytomedicine ; 129: 155654, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723525

ABSTRACT

BACKGROUND: Wenqingyin (WQY), an ancient Chinese medicinal agent, has been extensively used in treating infectious ailments throughout history. However, the anti-sepsis mechanism remains unknown. PURPOSE: This study investigated the diverse mechanisms of WQY in mitigating sepsis-induced acute lung injury (ALI). Additionally, the effects of WQY were validated using biological experiments. METHODS: This study combined UHPLC-Orbitrap-HRMS analysis and network pharmacology to predict the potential anti-sepsis mechanism of WQY. Sepsis-induced ALI models were established in vivo via intraperitoneal lipopolysaccharide (LPS) administration and in vitro by LPS-stimulated RAW 264.7 macrophages. Various techniques, including hematoxylin-eosin staining, TUNEL, qPCR, and ELISA, were used to assess lung damage and quantify inflammatory cytokines. Inflammatory cell infiltration was visualized through immunohistochemistry. Hub targets and signaling pathways were identified using Western blotting, immunohistochemistry, and immunofluorescence staining. RESULTS: Seventy-five active components and 237 associated targets were acquired, with 145 of these targets overlapping with processes related to sepsis. Based on the comprehensive protein-protein interaction network analysis, JUN, AKT1, TP53, IL-6, HSP90AA1, CASP3, VEGFA, IL-1ß, RELA, and EGFR may be targets of WQY for sepsis. Analysis of the Kyoto Gene and Genome Encyclopedia revealed that WQY is implicated in the advanced glycation end products/receptor for advanced glycation end products (AGE/RAGE) signaling pathway. In vivo, WQY alleviated sepsis-induced ALI, suppressing proinflammatory cytokines and inhibiting macrophage/neutrophil infiltration. In vitro, WQY reduced TNF-α, IL-6, and IL-1ß in LPS-induced RAW 264.7 macrophages. Furthermore, we verified that WQY protected against sepsis-induced ALI by regulating the RAGE pathway for the first time. Baicalin, coptisine, and paeoniflorin may be the effective components of WQY that inhibit RAGE. CONCLUSION: The primary mechanism of WQY in combating sepsis-induced ALI involves controlling RAGE levels and the PI3K/AKT pathway, suppressing inflammation, and mitigating lung damage. This study establishes a scientific foundation for understanding the mechanism of WQY and its clinical use in treating sepsis.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Lipopolysaccharides , Receptor for Advanced Glycation End Products , Sepsis , Signal Transduction , Acute Lung Injury/drug therapy , Animals , Sepsis/complications , Sepsis/drug therapy , Mice , RAW 264.7 Cells , Drugs, Chinese Herbal/pharmacology , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Male , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Network Pharmacology , Protective Agents/pharmacology , Glycation End Products, Advanced/metabolism
7.
PLoS One ; 19(5): e0303740, 2024.
Article in English | MEDLINE | ID: mdl-38748639

ABSTRACT

Acute kidney injury (AKI) is a sudden loss of renal function with a high mortality rate and inflammation is thought to be the underlying cause. The phenylpropanoid components acteoside (ACT) and isoacteoside (ISO), which were isolated from Cistanche deserticola Y.C.Ma, have been reported to have preventive effects against kidney disorders. This study aimed to investigate the anti-inflammatory properties and protective mechanisms of ACT and ISO. In this investigation, kidney function was assessed using a semi-automatic biochemical analyzer, histopathology was examined using Hematoxylin-Eosin staining and immunohistochemistry, and the concentration of inflammatory cytokines was assessed using an enzyme-linked immunosorbent assay (ELISA) test. In addition, using Western blot and q-PCR, the expression of proteins and genes connected to the NF-κB signaling pathway in mice with lipopolysaccharide (LPS)-induced AKI was found. The findings showed that under AKI intervention in LPS group, ACT group and ISO group, the expression of Rela (Rela gene is responsible for the expression of NFκB p65 protein) and Tlr4 mRNA was considerably elevated (P<0.01), which led to a significant improvement in the expression of MyD88, TLR4, Iκ-Bɑ and NF-κB p65 protein (P<0.001). The levels of Alb, Crea and BUN (P<0.001) increased along with the release of downstream inflammatory factors such as IL-1ß, IL-6, Cys-C, SOD1 and TNF-α (P<0.001). More importantly, the study showed that ISO had a more favorable impact on LPS-induced AKI mice than ACT. In conclusion, by inhibiting NF-κB signaling pathway, ACT and ISO could relieve renal failure and inflammation in AKI, offering a fresh possibility for the therapeutic management of the condition.


Subject(s)
Acute Kidney Injury , Glucosides , Inflammation , Lipopolysaccharides , NF-kappa B , Phenols , Signal Transduction , Animals , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Signal Transduction/drug effects , Glucosides/pharmacology , Glucosides/therapeutic use , Mice , NF-kappa B/metabolism , Male , Phenols/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Cytokines/metabolism , Transcription Factor RelA/metabolism
8.
Org Lett ; 26(22): 4756-4760, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38814147

ABSTRACT

A deselenylative protocol that enables the construction of the C-C and C-N bonds has been disclosed. By using acyl chloride/AgOTf as an efficient acylation reagent, diarylselenides smoothly undergo deselenylative acylation to produce a series of aroyl compounds. In addition, deselenylative nitration can be enabled by a mild nitration reagent consisting of TsCl and AgNO3, furnishing a diverse array of nitroaromatic compounds.

9.
J Ethnopharmacol ; 330: 118214, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38641076

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ferroptosis, a recently identified non-apoptotic form of cell death reliant on iron, is distinguished by an escalation in lipid reactive oxygen species (ROS) that are iron-dependent. This phenomenon has a strong correlation with irregularities in iron metabolism and lipid peroxidation. Salvia miltiorrhiza Bunge (DS), a medicinal herb frequently utilized in China, is highly esteemed for its therapeutic effectiveness in enhancing blood circulation and ameliorating blood stasis, particularly during the treatment of cardiovascular diseases (CVDs). Numerous pharmacological studies have identified that DS manifests antioxidative stress effects as well as inhibits lipid peroxidation. However, ambiguity persists regarding the potential of DS to impede ferroptosis in cardiomyocytes and subsequently improve myocardial damage post-myocardial infarction (MI). AIM OF THE STUDY: The present work focused on investigating whether DS could be used to prevent the ferroptosis of cardiomyocytes and improve post-MI myocardial damage. MATERIALS AND METHODS: In vivo experiments: Through ligation of the left anterior descending coronary artery, we constructed both a wild-type (WT) and NF-E2 p45-related factor 2 knockout (Nrf2-/-) mouse model of MI. Effects of DS and ferrostatin-1 (Fer-1) on post-MI cardiomyocyte ferroptosis were examined through detecting ferroptosis and myocardial damage-related indicators as well as Nrf2 signaling-associated protein levels. In vitro experiments: Erastin was used for stimulating H9C2 cardiomyocytes to construct an in vitro ferroptosis cardiomyocyte model. Effects of DS and Fer-1 on cardiomyocyte ferroptosis were determined based on ferroptosis-related indicators and Nrf2 signaling-associated protein levels. Additionally, inhibitor and activator of Nrf2 were used for confirming the impact of Nrf2 signaling on DS's effect on cardiomyocyte ferroptosis. RESULTS: In vivo: In comparison to the model group, DS suppressed ferroptosis in cardiomyocytes post-MI and ameliorated myocardial damage by inducing Nrf2 signaling-related proteins (Nrf2, xCT, GPX4), diminishing tissue ferrous iron and malondialdehyde (MDA) content. Additionally, it enhanced glutathione (GSH) levels and total superoxide dismutase (SOD) activity, effects that are aligned with those of Fer-1. Moreover, the effect of DS on alleviating cardiomyocyte ferroptosis after MI could be partly inhibited through Nrf2 knockdown. In vitro: Compared with the erastin group, DS inhibited cardiomyocyte ferroptosis by promoting the expression of Nrf2 signaling-related proteins, reducing ferrous iron, ROS, and MDA levels, but increasing GSH content and SOD activity, consistent with the effect of Fer-1. Additionally, Nrf2 inhibition increased erastin-mediated ferroptosis of cardiomyocytes through decreasing Nrf2 signaling-related protein expressions. Co-treatment with DS and Nrf2 activator failed to further enhance the anti-ferroptosis effect of DS. CONCLUSION: MI is accompanied by cardiomyocyte ferroptosis, whose underlying mechanism is probably associated with Nrf2 signaling inhibition. DS possibly suppresses ferroptosis of cardiomyocytes and improves myocardial damage after MI through activating Nrf2 signaling.


Subject(s)
Ferroptosis , Myocardial Infarction , Myocytes, Cardiac , Salvia miltiorrhiza , Signal Transduction , Animals , Male , Mice , Rats , Cell Line , Disease Models, Animal , Ferroptosis/drug effects , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Salvia miltiorrhiza/chemistry , Signal Transduction/drug effects
10.
Cell Biosci ; 14(1): 42, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38556890

ABSTRACT

BACKGROUND: Repeated neonatal sevoflurane exposures led to neurocognitive disorders in young mice. We aimed to assess the role of microglia and complement C1q in sevoflurane-induced neurotoxicity and explore the underlying mechanisms. METHODS: Neonatal mice were treated with sevoflurane on postnatal days 6, 8, and 10, and the Morris water maze was performed to assess cognitive functions. For mechanistic explorations, mice were treated with minocycline, C1q-antibody ANX005, and sialidase-inhibitor N-acetyl-2,3-dehydro-2-deoxyneuraminic acid (NADNA) before sevoflurane exposures. Western blotting, RT-qPCR, Golgi staining, 3D reconstruction and engulfment analysis, immunofluorescence, and microglial morphology analysis were performed. In vitro experiments were conducted in microglial cell line BV2 cells. RESULTS: Repeated neonatal sevoflurane exposures resulted in deficiencies in learning and cognition of young mice, accompanied by microglial activation and synapse loss. Sevoflurane enhanced microglia-mediated synapse elimination through C1q binding to synapses. Inhibition of microglial activation and phagocytosis with minocycline significantly reduced the loss of synapses. We further revealed the involvement of neuronal sialic acids in this process. The enhanced activity of sialidase by sevoflurane led to the loss of sialic acids, which facilitated C1q binding to synapses. Inhibition of C1q with ANX005 or inhibition of sialidase with NADNA significantly rescued microglia-mediated synapse loss and improved neurocognitive function. Sevoflurane enhanced the engulfment of BV2 cells, which was reversed by ANX005. CONCLUSIONS: Our findings demonstrated that C1q-mediated microglial synaptic elimination by enhancing desialylation contributed to sevoflurane-induced developmental neurotoxicity. Inhibition of C1q or sialidase may be a potential therapeutic strategy for this neurotoxicity.

11.
Adv Mater ; 36(21): e2308504, 2024 May.
Article in English | MEDLINE | ID: mdl-38546279

ABSTRACT

Anexelekto (AXL) is an attractive molecular target for ovarian cancer therapy because of its important role in ovarian cancer initiation and progression. To date, several AXL inhibitors have entered clinical trials for the treatment of ovarian cancer. However, the disadvantages of low AXL affinity and severe off-target toxicity of these inhibitors limit their further clinical applications. Herein, by rational design of a nonapeptide derivative Nap-Phe-Phe-Glu-Ile-Arg-Leu-Arg-Phe-Lys (Nap-IR), a strategy of in situ nanofiber formation is proposed to suppress ovarian cancer growth. After administration, Nap-IR specifically targets overexpressed AXL on ovarian cancer cell membranes and undergoes a receptor-instructed nanoparticle-to-nanofiber transition. In vivo and in vitro experiments demonstrate that in situ formed Nap-IR nanofibers efficiently induce apoptosis of ovarian cancer cells by blocking AXL activation and disrupting subsequent downstream signaling events. Remarkably, Nap-IR can synergistically enhance the anticancer effect of cisplatin against HO8910 ovarian tumors. It is anticipated that the Nap-IR can be applied in clinical ovarian cancer therapy in the near future.


Subject(s)
Axl Receptor Tyrosine Kinase , Intercellular Signaling Peptides and Proteins , Nanofibers , Ovarian Neoplasms , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Nanofibers/chemistry , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Cell Line, Tumor , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Oligopeptides/chemistry , Oligopeptides/pharmacology , Mice , Protein Binding , Cisplatin/pharmacology , Cisplatin/chemistry
12.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38488622

ABSTRACT

The nuclear translocation of YAP1 is significantly implicated in the proliferation, stemness, and metastasis of cancer cells. Although the molecular basis underlying YAP1 subcellular distribution has been extensively explored, it remains to be elucidated how the nuclear localization signal guides YAP1 to pass through the nuclear pore complex. Here, we define a globular type of nuclear localization signal composed of folded WW domains, named as WW-NLS. It directs YAP1 nuclear import through the heterodimeric nuclear transport receptors KPNA-KPNB1, bypassing the canonical nuclear localization signal that has been well documented in KPNA/KPNB1-mediated nuclear import. Strikingly, competitive interference with the function of the WW-NLS significantly attenuates YAP1 nuclear translocation and damages stemness gene activation and sphere formation in malignant breast cancer cells. Our findings elucidate a novel globular type of nuclear localization signal to facilitate nuclear entry of WW-containing proteins including YAP1.


Subject(s)
Cell Nucleus , Nuclear Localization Signals , YAP-Signaling Proteins , Humans , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Proteins/metabolism , WW Domains , YAP-Signaling Proteins/chemistry , YAP-Signaling Proteins/metabolism , alpha Karyopherins/metabolism , beta Karyopherins/metabolism
13.
Materials (Basel) ; 17(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38473460

ABSTRACT

The interactions between plasma and liquids cause complex physical and chemical reactions at the gas-liquid contact surface, producing numerous chemically active particles that can rapidly reduce noble metal ions. This study uses atmospheric-pressure surface dielectric barrier discharge (DBD) plasma to treat ethanol aqueous solutions containing noble metal precursors, and stable gold, platinum, and palladium colloids are obtained within a few minutes. To evaluate the mechanism of the reduction of noble metal precursors by atmospheric-pressure surface DBD plasma, the corresponding metal colloids are prepared first by activating an ethanol aqueous solution with plasma and then adding noble metal precursors. It is found that the long-lived active species hydrogen peroxide (H2O2) plays a dominant role in the synthesis process, which has distinct effects on different metal ions. When HAuCl4 and H2PdCl4 are used as precursors, H2O2 acts as a reducing agent, and AuCl4- and PdCl42- ions can be reduced to metallic Au and Pd. However, when AgNO3 is the precursor, H2O2 acts as an oxidising agent, and Ag+ ions cannot be reduced to obtain metal colloids because metallic Ag can be dissolved in H2O2 under acidic conditions. A similar phenomenon was also observed for the preparation of Pd colloid-PA with a plasma-activated ethanol aqueous solution using Pd(NO3)2 as a Pd precursor.

14.
J Neurochem ; 168(6): 1080-1096, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38317263

ABSTRACT

Sevoflurane, the predominant pediatric anesthetic, has been linked to neurotoxicity in young mice, although the underlying mechanisms remain unclear. This study focuses on investigating the impact of neonatal sevoflurane exposure on cell-type-specific alterations in the prefrontal cortex (PFC) of young mice. Neonatal mice were subjected to either control treatment (60% oxygen balanced with nitrogen) or sevoflurane anesthesia (3% sevoflurane in 60% oxygen balanced with nitrogen) for 2 hours on postnatal days (PNDs) 6, 8, and 10. Behavioral tests and single-nucleus RNA sequencing (snRNA-seq) of the PFC were conducted from PNDs 31 to 37. Mechanistic exploration included clustering analysis, identification of differentially expressed genes (DEGs), enrichment analyses, single-cell trajectory analysis, and genome-wide association studies (GWAS). Sevoflurane anesthesia resulted in sociability and cognition impairments in mice. Novel specific marker genes identified 8 distinct cell types in the PFC. Most DEGs between the control and sevoflurane groups were unique to specific cell types. Re-defining 15 glutamatergic neuron subclusters based on layer identity revealed their altered expression profiles. Notably, sevoflurane disrupted the trajectory from oligodendrocyte precursor cells (OPCs) to oligodendrocytes (OLs). Validation of disease-relevant candidate genes across the main cell types demonstrated their association with social dysfunction and working memory impairment. Behavioral results and snRNA-seq collectively elucidated the cellular atlas in the PFC of young male mice, providing a foundation for further mechanistic studies on developmental neurotoxicity induced by anesthesia.


Subject(s)
Anesthetics, Inhalation , Prefrontal Cortex , Sevoflurane , Animals , Sevoflurane/toxicity , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Mice , Anesthetics, Inhalation/toxicity , Male , Animals, Newborn , Female , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Genome-Wide Association Study
15.
J Ethnopharmacol ; 323: 117718, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38181933

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: It has been reported that apoptosis and oxidative stress are related to cyclophosphamide (CYC)-induced premature ovarian failure (POF). Therefore, anti-apoptotic and anti-oxidative stress treatments exhibit therapeutic efficacy in CYC-induced POF. Danggui Shaoyao San (DSS), which has been extensively used to treat gynecologic diseases, is found to inhibit apoptosis and reduce oxidative stress. However, the roles of DSS in regulating apoptosis and oxidative stress during CYC-induced POF, and its associated mechanisms are still unknown. AIM OF THE STUDY: This work aimed to investigate the roles and mechanisms of DSS in inhibiting apoptosis and oxidative stress in CYC-induced POF. MATERIALS AND METHODS: CYC (75 mg/kg) was intraperitoneally injected in mice to construct the POF mouse model for in vivo study. Thereafter, alterations of body weight, ovary morphology and estrous cycle were monitored to assess the ovarian protective properties of DSS. Serum LH and E2 levels were analyzed by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was employed for examining ovarian pathological morphology and quantifying follicles in various stages. Meanwhile, TUNEL staining and apoptosis-related proteins were adopted for evaluating apoptosis. Oxidative stress was measured by the levels of ROS, MDA, and 4-HNE. Western blot (WB) assay was performed to detect proteins related to the SIRT1/p53 pathway. KGN cells were used for in vitro experiment. TBHP stimulation was carried out for establishing the oxidative stress-induced apoptosis cell model. Furthermore, MTT assay was employed for evaluating the protection of DSS from TBHP-induced oxidative stress. The anti-apoptotic ability of DSS was evaluated by hoechst/PI staining, JC-1 staining, and apoptosis-related proteins. Additionally, the anti-oxidative stress ability of DSS was measured by detecting the levels of ROS, MDA, and 4-HNE. Proteins related to SIRT1/p53 signaling pathway were also measured using WB and immunofluorescence (IF) staining. Besides, SIRT1 expression was suppressed by EX527 to further investigate the role of SIRT1 in the effects of DSS against apoptosis and oxidative stress. RESULTS: In the in vivo experiment, DSS dose-dependently exerted its anti-apoptotic, anti-oxidative stress, and ovarian protective effects. In addition, apoptosis, apoptosis-related protein and oxidative stress levels were inhibited by DSS treatment. DSS treatment up-regulated SIRT1 and down-regulated p53 expression. From in vitro experiment, it was found that DSS treatment protected KGN cells from TBHP-induced oxidative stress injury. Besides, DSS administration suppressed the apoptosis ratio, apoptosis-related protein levels, mitochondrial membrane potential damage, and oxidative stress. SIRT1 suppression by EX527 abolished the anti-apoptotic, anti-oxidative stress, and ovarian protective effects, as discovered from in vivo and in vitro experiments. CONCLUSIONS: DSS exerts the anti-apoptotic, anti-oxidative stress, and ovarian protective effects in POF mice, and suppresses the apoptosis and oxidative stress of KGN cells through activating SIRT1 and suppressing p53 pathway.


Subject(s)
Menopause, Premature , Primary Ovarian Insufficiency , Humans , Female , Mice , Animals , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/drug therapy , Primary Ovarian Insufficiency/prevention & control , Tumor Suppressor Protein p53/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Oxidative Stress , Apoptosis , Cyclophosphamide/toxicity , Signal Transduction
16.
Int J Biol Macromol ; 254(Pt 2): 127887, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37935288

ABSTRACT

A cleaner and safer environment is one of the most important requirements in the future. It has become increasingly urgent and important to fabricate novel environmentally-friendly materials to remove various hazardous pollutants. Compared with traditional materials, chitosan is a more environmentally friendly material due to its abundance, biocompatibility, biodegradability, film-forming ability and hydrophilicity. As an abundant of -NH2 and -OH groups on chitosan molecular chain could chelate with all kinds of metal ions efficiently, chitosan-based materials hold great potential as a versatile supporting matrix for metal oxide nanomaterials (MONMs) (TiO2, ZnO, SnO2, Fe3O4, etc.). Recently, many chitosan/metal oxide nanomaterials (CS/MONMs) have been reported as adsorbents, photocatalysts, heterogeneous Fenton-like agents, and sensors for potential and practical applications in environmental remediation and monitoring. This review analyzed and summarized the recent advances in CS/MONMs composites, which will provide plentiful and meaningful information on the preparation and application of CS/MONMs composites for wastewater treatment and help researchers to better understand the potential of CS/MONMs composites for environmental remediation and monitoring. In addition, the challenges of CS/MONM have been proposed.


Subject(s)
Chitosan , Environmental Pollutants , Environmental Restoration and Remediation , Nanocomposites , Water Pollutants, Chemical , Oxides , Adsorption
17.
Chem Commun (Camb) ; 60(7): 862-865, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38131618

ABSTRACT

One-pot synthesis of structurally diverse sulfurized/selenated 4-aminopyrimidines has been reported via t-BuOK/K2S2O8-promoted four-component reaction of mixed nitriles and disulfides/diselenides. Mechanistic studies indicate that the reaction proceeds through radical and ionic pathways, and an alkenyl sulfide serves as a key intermediate.

18.
J Ginseng Res ; 47(6): 743-754, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38107395

ABSTRACT

Background: Myocardial fibrosis post-myocardial infarction (MI) can induce maladaptive cardiac remodeling as well as heart failure. Although 20(S)-ginsenoside Rg3 (Rg3) has been applied to cardiovascular diseases, its efficacy and specific molecular mechanism in myocardial fibrosis are largely unknown. Herein, we aimed to explore whether TGFBR1 signaling was involved in Rg3's anti-fibrotic effect post-MI. Methods: Left anterior descending (LAD) coronary artery ligation-induced MI mice and TGF-ß1-stimulated primary cardiac fibroblasts (CFs) were adopted. Echocardiography, hematoxlin-eosin and Masson staining, Western-blot and immunohistochemistry, CCK8 and Edu were used to study the effects of Rg3 on myocardial fibrosis and TGFBR1 signaling. The combination mechanism of Rg3 and TGFBR1 was explored by surface plasmon resonance imaging (SPRi). Moreover, myocardial Tgfbr1-deficient mice and TGFBR1 adenovirus were adopted to confirm the pharmacological mechanism of Rg3. Results: In vivo experiments, Rg3 ameliorated myocardial fibrosis and hypertrophy and enhanced cardiac function. Rg3-TGFBR1 had the 1.78 × 10-7 M equilibrium dissociation constant based on SPRi analysis, and Rg3 inhibited the activation of TGFBR1/Smads signaling dose-dependently. Cardiac-specific Tgfbr1 knockdown abolished Rg3's protection against myocardial fibrosis post-MI. In addition, Rg3 down-regulated the TGF-ß1-mediated CFs growth together with collagen production in vitro through TGFBR1 signaling. Moreover, TGFBR1 adenovirus partially blocked the inhibitory effect of Rg3. Conclusion: Rg3 improves myocardial fibrosis and cardiac function through suppressing CFs proliferation along with collagen deposition by inactivation of TGFBR1 pathway.

19.
Plant Dis ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100672

ABSTRACT

Ginger (Zingiber officinale) is an important commercial crop that has been widely cultivated in China for more than 2500 years. One variety, Tongling white ginger, has been grown in the Yi'an District of Tongling city, Anhui province (30°45 N, 117°43 E), China. In August 2022, symptoms of yellowing and wilting were observed on ginger plants, with a disease incidence rate exceeding 20% in the field. The stem base of the diseased plants became soft, brown and water-soaked. Additionally, the rhizomes displayed symptoms of browning and water-soaked rot, resembling those caused by Ralstonia solanacearum and Enterobacter cloacae (Yu et al. 2003; Nishijima et al. 2004; Liu et al. 2021). Consequently, ginger bacterial wilt disease may potentially emerge from a combination of infections by diverse pathogenic bacteria. To identify novel pathogens causing the wilt disease, stem tissues of the diseased plants from different locations were sterilized with 1% sodium hypochlorite (NaOCl) for 10 min, followed by at least three time rinses with sterile water. The sterilized samples were then ground with 0.9% saline solution and left at room temperature for 30 min. A 20 µL aliquot of the suspension was serially diluted and cultured on Luria-Bertani (LB) medium at 28°C. A total of 217 isolates was picked and purified for taxonomic identification by 16S rRNA gene analyses with the primer 27F/1492R (Weisburg et al. 1991). Among these isolates, 23 single colony isolates were identified as A. xylosoxidans through NCBI BLASTn analyses. Furthermore, three single isolates from different locations were randomly selected for further experiments. The growing colonies appeared opaque white and round. Microscopic evaluation revealed that cells were rod-shaped with an average length of 1.95 µm and average width of 0.46 µm. The three isolates shared identical 16S rRNA sequences, displayed 99.72% identity with the sequence from A. xylosoxidans strain SeqID2 (GenBank accession NO. MH266081.1). The glutamate synthase (gltB), GTP-binding membrane protein (lepA), NADH:ubiquinone oxidoreductase subunit L (nuoL), RNA polymerase beta-subunit (rpoB), and the enolase (eno) genes of the three isolates were amplified by PCR using primer pairs gltB-F/gltB-R, lepA-F/lepA-R, nuoL-F/nuoL-R, rpoB-F/rpoB-R and eno-F/eno-R, respectively (Spilker et al. 2012; Vandamme et al. 2016). The gene sequences of 16S rRNA (OQ711945, OQ740153 and OR230037), gltB (OR242732, OQ737692 and OR262112), lepA (OR233727, OQ737693 and OR262113), nuoL (OR233726, OQ737694 and OR262114), ropB (OR233725, OQ737695 and OR262115) and eno (OR242733, OQ737696 and OR262116) for the isolates ZOR02, ZOR05 and ZOR12 were deposited in GenBank database. The gltB, lepA, nuoL, rpoB and eno sequences of the isolates ZOR02, ZOR05 and ZOR12 showed 98.66-99.16%, 98.9-100%, 96.28%-97.34%, 98.47-99.44% and 99.27-99.82% similarity to A. xylosoxidans strain AX27, respectively. Phylogenetic trees were constructed based on the 16S rRNA and gltB-lepA-nuoL-rpoB-eno multilocus using the Neighbor-Joining (NJ) method with 1000 bootstrap replicates in MEGA11.0 software (Álvarez et al. 2018). For pathogenicity tests, bacterial suspensions were initially prepared in sterile water at a final concentration of 108 CFU mL-1. Subsequently, 10 µL of bacterial suspensions was injected into the stem base of two-month-old ginger plants, while sterile water was used as a control (Wang et al. 2022). These plants were then incubated at 28°C and 70% relative humidity. There were three replicates for each treatment, and each replicate contained five plants. After six days of inoculation, the ginger plants injected with bacterial suspensions alone exhibited severe wilting symptoms similar to those observed in the field. However, water-soaked symptoms were not observed on rhizome tissues from the pathogen-infected plants. Bacterial pathogens were re-isolated from the diseased plants and identified using the morphological and molecular methods to meet Koch's hypothetical tests. To our knowledge, this is the first report of A. xylosoxidans causing wilt disease of ginger in China. In 2022, the average yield loss due to wilt disease in the Yi'an District of Tongling exceeded 20%, posing a major threat to local ginger cultivation. Effective disease management strategies are needed to develop for the control and prevention of the disease.

20.
Biomed Environ Sci ; 36(9): 800-813, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37803893

ABSTRACT

Objective: This study aimed to determine the HIV-1 subtype distribution and HIV drug resistance (HIVDR) in patients with ART failure from 2014 to 2020 in Hainan, China. Methods: A 7-year cross-sectional study was conducted among HIV/AIDS patients with ART failure in Hainan. We used online subtyping tools and the maximum likelihood phylogenetic tree to confirm the HIV subtypes with pol sequences. Drug resistance mutations (DRMs) were analyzed using the Stanford University HIV Drug Resistance Database. Results: A total of 307 HIV-infected patients with ART failure were included, and 241 available pol sequences were obtained. Among 241 patients, CRF01_AE accounted for 68.88%, followed by CRF07_BC (17.00%) and eight other subtypes (14.12%). The overall prevalence of HIVDR was 61.41%, and the HIVDR against non-nucleoside reverse transcriptase inhibitors (NNRTIs), nucleotide reverse transcriptase inhibitors (NRTIs), and protease inhibitors (PIs) were 59.75%, 45.64%, and 2.49%, respectively. Unemployed patients, hypoimmunity or opportunistic infections in individuals, and samples from 2017 to 2020 increased the odd ratios of HIVDR. Also, HIVDR was less likely to affect female patients. The common DRMs to NNRTIs were K103N (21.99%) and Y181C (20.33%), and M184V (28.21%) and K65R (19.09%) were the main DRMs against NRTIs. Conclusion: The present study highlights the HIV-1 subtype diversity in Hainan and the importance of HIVDR surveillance over a long period.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , Reverse Transcriptase Inhibitors/toxicity , Reverse Transcriptase Inhibitors/therapeutic use , HIV-1/genetics , Cross-Sectional Studies , Phylogeny , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Drug Resistance, Viral/genetics , HIV Infections/drug therapy , HIV Infections/epidemiology , Mutation , China/epidemiology , Prevalence , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL