Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Eur J Cancer ; 212: 114337, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39357276

ABSTRACT

BACKGROUND: IBI351 is an irreversible and covalent inhibitor of KRAS G12C. Despite FDA approval of two KRAS G12C inhibitors, there are still significant unmet clinical needs in Chinese patients and ongoing concerns about the optimal dosage. Herein, we presented the phase Ia/Ib study of IBI351 monotherapy in Chinese patients with advanced solid tumors harboring KRAS G12C mutation. METHODS: In phase Ia dose escalation, IBI351 at 250/450/700/900 mg once daily and 450/600/750 mg twice daily (BID) were evaluated. Potentially efficacious doses and optimal recommended phase 2 dose (RP2D) were further evaluated in patients with advanced non-small cell lung cancer (NSCLC) in phase Ia dose expansion and phase Ib. Safety, pharmacokinetics, and investigator-assessed tumor response were evaluated. RESULTS: As of June 13, 2023, 176 patients were enrolled. IBI351 was well tolerated with no dose-limiting toxicity reported across all evaluated doses. The RP2D was determined as 600 mg BID by considering safety, efficacy and pharmacokinetics. A total of 168 patients (95.5 %) had at least one treatment-related adverse event (TRAE), and 64 patients (36.4 %) had grade 3 or higher TRAEs, most commonly gamma-glutamyl transferase increased (10.2 %) and anemia (6.8 %). For patients with NSCLC, the confirmed objective response rate (ORR) was 45.5 % across all doses. At 600 mg BID, the confirmed ORR was 46.8 % and median progression-free survival was 9.6 months with a median follow-up of 6.9 months. CONCLUSIONS: IBI351 was well tolerated in patients with advanced solid tumors and showed promising antitumor activity in advanced NSCLC patients with KRAS G12C mutation.

2.
3.
Inorg Chem ; 63(41): 19332-19343, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39360903

ABSTRACT

Three bis-formylfluorenimide ligands with different bridging groups were designed and synthesized, leading to the successful preparation of six novel alkylaluminum complexes through their reaction with alkylaluminum reagents (AlMe3 or AlEt3). Complexes 1 and 2 were obtained by the reaction of 1,2-propylene-bridged diamine (L1) with AlMe3 or AlEt3. By reacting 1,2-cyclohexylene-bridged diamine (L2) with AlMe3 or AlEt3 to obtain complexes 3 and 4. The above ligands formed a bidentate four-coordinate structure with alkylaluminum, which involved the elimination of one alkyl group as the ligand reacted with alkylaluminum. The complexes 5 and 6 were synthesized through the reaction of 1,2-phenylene-bridged diamine (L3) with AlEt3 in toluene or tetrahydrofuran. Notably, L3 exhibited unique reactivity compared with the other ligands, which formed a tridentate four-coordinated structure when reacting with alkylaluminum. The formation of the tridentate complex resulted from the introduction of a benzimidazole derivative or tetrahydrofuran (THF) molecule along with the elimination of two alkyl groups during its coordination with alkylaluminum. All complexes were characterized via 1H NMR, 13C NMR, and elemental analysis, with structural determination confirmed through X-ray. Furthermore, the catalytic activity in the hydroboration reaction of aldehyde, ketone, and imines was investigated with these complexes as catalysts. Among them, complex 1 demonstrated excellent catalytic performance (up to 99% yield) and broad substrate compatibility (more than 30 substrates) at low catalyst loading (1 mol %) under mild reaction conditions.

5.
Env Sci Adv ; 3(10): 1426-1437, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39156222

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic, highly fluorinated aliphatic compounds, commonly utilised in a wide variety of consumer products with diverse applications. Since the genesis of these compounds, a growing body of evidence has demonstrated adverse health effects associated with PFAS exposure. In a racially diverse cohort of 459 pregnant mothers, demographically weighted towards minority representation (black 44.4%, white 38.4%, other 17.2%), across three major populous cities of the US, PFAS profiling was performed. Nine distinct PFAS species were quantified using mass spectrometry in plasma samples collected during the third trimester. Multivariable logistic and linear regression analyses were conducted to interrogate the associations of PFAS with gestational and birth outcomes: gestational diabetes, preeclampsia, gestational age at delivery, low birth weight, birth weight-, birth length- and head circumference-for-gestational-age. Detectable levels for eight out of nine profiled PFAS species were found in the plasma of pregnant mothers with a median range of 0.1-2.70 ng ml-1. Using a mixtures approach, we observe that increased quantile-based g-computation (Qg-comp) "total" PFAS levels were associated with increased newborn birth-weight-for-gestational-age (ß 1.28; 95% CI 1.07-1.52; FDR p 0.006). In study centre-stratified analyses, we observed a similar trend in Boston pregnant mothers, with Qg-comp total PFAS associated with higher newborn birth-weight-for-gestational-age (ß 1.39; 95% CI 1.01-1.92, FDR p 0.05). We additionally found elevated PFUA concentrations were associated with longer gestational terms in San Diego pregnant mothers (ß 0.60; 95% CI 0.18-1.02, FDR p 0.05). In this multi-city study, we detected lower levels of PFAS than in many previous US environmental studies, concordant with current US trends indicating environmental PFAS levels are falling, and we note geographical variation in the associations between PFAS levels and birth outcomes.

6.
J Thorac Oncol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39127176

ABSTRACT

INTRODUCTION: KRAS glycine-to-cysteine substitution at codon 12 (G12C) mutation is a well-recognized and increasingly promising therapeutic target with huge unmet clinical needs in NSCLC patients. IBI351 is a potent covalent and irreversible inhibitor of KRAS G12C. Here, we present the efficacy and safety of IBI351 from an open-label, single-arm, phase 2 pivotal study. METHODS: Eligible patients with NSCLC with KRAS G12C who failed standard therapy were enrolled. IBI351 was orally administered at a dose of 600 mg twice daily. The primary endpoint was confirmed objective response rate assessed by an independent radiological review committee (IRRC) as per Response Evaluation Criteria in Solid Tumors v1.1. Other endpoints were safety, IRRC-confirmed disease control rate, duration of response, progression-free survival (PFS), and overall survival. RESULTS: As of December 13, 2023, 116 patients were enrolled (Eastern Cooperative Oncology Group Performance Status 1: 91.4%; brain metastasis: 30.2%; prior treatments with both anti-PD-1 or anti-PD-L1 inhibitors and platinum-based chemotherapy: 84.5%). As per the IRRC assessment, the confirmed objective response rate was 49.1% (95% confidence interval [CI]: 39.7-58.6), and the disease control rate was 90.5% (95% CI: 83.7-95.2). The median duration of response was not reached whereas disease progression or death events occurred in 22 patients (38.6%), and the median PFS was 9.7 months (95% CI: 5.6-11.0). overall survival data was immature. Treatment-related adverse events (TRAEs) occurred in 107 patients (92.2%) whereas 48 patients (41.4%) had equal to or higher than grade three TRAEs. Common TRAEs were anemia (44.8%), increased alanine aminotransferase (28.4%), increased aspartate aminotransferase (27.6%), asthenia (26.7%) and presence of protein in urine (25.0%). TRAEs leading to treatment discontinuation occurred in nine patients (7.8%). In biomarker evaluable patients (n = 95), all patients had positive KRAS G12C in tissue whereas 72 patients were blood-positive and 23 were blood-negative for KRAS G12C. Patients with KRAS G12C in both blood and tissue had higher tumor burden at baseline (p < 0.05) and worse PFS (p < 0.05). Tumor mutation profiling identified tumor protein p53 (45.3%), serine/threonine kinase 11 (STK11) (30.5%), and kelch-like ECH-associated protein 1 (21.1%) as the most common genes co-mutated with KRAS G12C. Among 13 genes with mutation frequency equal to or higher than 5%, mutations of six genes (STK11, kelch-like ECH-associated protein 1, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma, DNA polymerase epsilon, SMAD family member 4, and BMP/retinoic acid-inducible neural-specific protein 3) were significantly associated with worse PFS (p < 0.05). Mutation in STK11 was also found to have a significant association with higher tumor burden at baseline and lower response rate (p < 0.05). CONCLUSIONS: IBI351 monotherapy demonstrated promising and sustained efficacy with manageable safety, supporting its potential as a new treatment option for KRAS G12C-mutant NSCLC.

8.
Plant Physiol Biochem ; 213: 108812, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875781

ABSTRACT

Tomato yellow leaf curl virus (TYLCV), a DNA virus belonging to the genus Begomovirus, significantly impedes the growth and development of numerous host plants, including tomatoes and peppers. Due to its rapid mutation rate and frequent recombination events, achieving complete control of TYLCV proves exceptionally challenging. Consequently, identifying resistance mechanisms become crucial for safeguarding host plants from TYLCV-induced damage. This review article delves into the global distribution, dispersal patterns, and defining characteristics of TYLCV. Moreover, the intricate interplay between TYLCV and various influencing factors, such as insect vectors, susceptible host plants, and abiotic stresses, plays a pivotal role in plant-TYLCV interactions. The review offers an updated perspective on recent investigations focused on plant response mechanisms to TYLCV infection, including the intricate relationship between TYLCV, whiteflies, and regulatory factors. This comprehensive analysis aims to establish a foundation for future research endeavors exploring the molecular mechanisms underlying TYLCV infection and the development of plant resistance through breeding programs.


Subject(s)
Begomovirus , Plant Diseases , Begomovirus/physiology , Plant Diseases/virology , Hemiptera/virology , Hemiptera/physiology , Disease Resistance/genetics , Animals , Solanum lycopersicum/virology , Solanum lycopersicum/genetics , Insect Vectors/virology
9.
Lipids Health Dis ; 23(1): 83, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509578

ABSTRACT

OBJECTIVE: To enhance the detection, management and monitoring of Chinese children afflicted with sitosterolemia by examining the physical characteristics and genetic makeup of pediatric patients. METHODS: In this group, 26 children were diagnosed with sitosterolemia, 24 of whom underwent genetic analysis. Patient family medical history, physical symptoms, tests for liver function, lipid levels, standard blood tests, phytosterol levels, cardiac/carotid artery ultrasounds, fundus examinations, and treatment were collected. RESULTS: The majority (19, 73.1%) of the 26 patients exhibited xanthomas as the most prevalent manifestation. The second most common symptoms were joint pain (7, 26.9%) and stunted growth (4, 15.4%). Among the 24 (92.3%) patients whose genetics were analyzed, 16 (66.7%) harbored ABCG5 variants (type 2 sitosterolemia), and nearly one-third (8, 33.3%) harbored ABCG8 variants (type 1 sitosterolemia). Additionally, the most common pathogenic ABCG5 variant was c.1166G > A (p.Arg389His), which was found in 10 patients (66.7%). Further analysis did not indicate any significant differences in pathological traits among those carrying ABCG5 and ABCG8 variations (P > 0.05). Interestingly, there was a greater abundance of nonsense variations in ABCG5 than in ABCG8 (P = 0.09), and a greater frequency of splicing variations in ABCG8 than ABCG5 (P = 0.01). Following a change in diet or a combination of ezetimibe, the levels of cholesterol and low-density lipoprotein were markedly decreased compared to the levels reported before treatment. CONCLUSION: Sitosterolemia should be considered for individuals presenting with xanthomas and increased cholesterol levels. Phytosterol testing and genetic analysis are important for early detection. Managing one's diet and taking ezetimibe can well control blood lipids.


Subject(s)
Hypercholesterolemia , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , Phytosterols/adverse effects , Xanthomatosis , Humans , Child , Lipoproteins/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Phytosterols/genetics , Cholesterol , Ezetimibe/therapeutic use
10.
EBioMedicine ; 102: 105025, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458111

ABSTRACT

BACKGROUND: Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants. METHODS: We utilized ordinal logistic regression to identify plasma metabolite principal components associated with four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660). The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an false discovery rate-adjusted Q-value. FINDINGS: The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of PCLF were also associated with increases in lung function measures and decreased circulating neutrophil percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10-5), SLC8A1 (P-value = 3.9 × 10-5); and TENM4 (P-value = 4.9 × 10-5). INTERPRETATION: This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma, offering insights into asthma physiology and possible interventions to enhance lung function and long-term health. FUNDING: Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).


Subject(s)
Asthma , MicroRNAs , Child , Humans , Cross-Sectional Studies , Lung/metabolism , MicroRNAs/metabolism , Metabolomics
11.
Abdom Radiol (NY) ; 49(5): 1479-1488, 2024 05.
Article in English | MEDLINE | ID: mdl-38551668

ABSTRACT

BACKGROUND: To identify reliable magnetic resonance imaging (MRI) features that can differentiate confluent fibrosis (CF) from infiltrative hepatocellular carcinoma (HCC). METHODS: A retrospective analysis was conducted on Twenty CF patients and 28 infiltrative HCC patients who underwent upper abdomen MRI scans. The imaging features of lesions were analyzed, and the apparent diffusion coefficient (ADC) of lesions were measured. Accuracy, sensitivity and specificity for the diagnosis of CF were calculated for each category individually and combined. RESULTS: Compared to infiltrative HCC, hepatic capsular retraction at the site of lesion, hepatic volume loss at the site of lesion and "nodular surround sign" were more common in patients with CF (all P < 0.001). Hepatic volume loss at the site of lesion, no or mild enhancement in arterial phase, and hyper-enhancing in delayed phase to the background parenchyma showed superior diagnostic accuracy (83.3%, 85.4%, 97.9%, respectively). When the lesion exhibited hepatic volume loss at the site of lesion or no or mild enhancement in arterial phase or hyper-enhancing in delayed phase, a sensitivity of 100.0% for the diagnosis of CF was achieved. When the lesion was positive for any two of three categories, or positive for all three categories, a specificity of 100.0% was achieved. The ADC values of CF were higher than those of infiltrative HCC (P < 0.001). CONCLUSION: The combination of the hepatic volume loss at the site of lesion, no or mild enhancement in arterial phase, and hyper-enhancing in delayed phase to the background parenchyma can be considered reliable MR features for the diagnosis of CF, as they allow differentiation from infiltrative HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Cirrhosis , Liver Neoplasms , Magnetic Resonance Imaging , Sensitivity and Specificity , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Male , Female , Retrospective Studies , Diagnosis, Differential , Middle Aged , Liver Cirrhosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Aged , Contrast Media
12.
Dalton Trans ; 53(9): 4185-4193, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38323430

ABSTRACT

Five new alkylaluminum complexes with different pyridinyl-substituted imines or cyclohexyl-substituted imines were synthesized and characterized successfully. The aluminum complex [FlCHNCH(CH3)Py]AlMe2(Py = 2-pyridyl) (1) was obtained by reacting 9-[2-pyridyl-CH(CH3)-NCH]Fl (Fl = fluorenyl) (L1) and equimolar AlMe3. The reactions of 9-(2-pyridyl-NCH)Fl (L2) and 9-[2-N(CH3)2-cyclohexyl-NCH]Fl (L3) with equimolar AlMe3 or AlEt3 afforded other alkylaluminum complexes [FlCHNPy]AlMe2(Py = 2-pyridyl) (2), [FlCHNPy]AlEt2 (Py = 2-pyridyl) (3), [FlCHNCyN(CH3)2]AlMe2 (Cy = 2-cyclohexyl) (4) and [FlCHNCyN(CH3)2]AlEt2 (Cy = 2-cyclohexyl) (5). All these complexes (1-5) were characterized using NMR spectroscopy, elemental analysis, and X-ray crystal structure analysis. The catalytic properties of these new alkylaluminum complexes for the hydrophosphonylation of aldimines were examined. Complex 5 showed the best catalytic performance under mild reaction conditions with a low catalyst loading (1 mol%), and 20 different substituents of aldimines were isolated with more than 90% yields.

15.
Allergy ; 79(2): 404-418, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38014461

ABSTRACT

BACKGROUND: While dysregulated sphingolipid metabolism has been associated with risk of childhood asthma, the specific sphingolipid classes and/or mechanisms driving this relationship remain unclear. We aimed to understand the multifaceted role between sphingolipids and other established asthma risk factors that complicate this relationship. METHODS: We performed targeted LC-MS/MS-based quantification of 77 sphingolipids in plasma from 997 children aged 6 years from two independent cohorts (VDAART and COPSAC2010 ). We examined associations of circulatory sphingolipids with childhood asthma, lung function, and three asthma risk factors: functional SNPs in ORMDL3, low vitamin D levels, and reduced gut microbial maturity. Given racial differences between these cohorts, association analyses were performed separately and then meta-analyzed together. RESULTS: We observed elevations in circulatory sphingolipids with asthma phenotypes and risk factors; however, there were differential associations of sphingolipid classes with clinical outcomes and/or risk factors. While elevations from metabolites involved in ceramide recycling and catabolic pathways were associated with asthma and worse lung function [meta p-value range: 1.863E-04 to 2.24E-3], increased ceramide levels were associated with asthma risk factors [meta p-value range: 7.75E-5 to .013], but not asthma. Further investigation identified that some ceramides acted as mediators while some interacted with risk factors in the associations with asthma outcomes. CONCLUSION: This study demonstrates the differential role that sphingolipid subclasses may play in asthma and its risk factors. While overall elevations in sphingolipids appeared to be deleterious overall; elevations in ceramides were uniquely associated with increases in asthma risk factors only; while elevations in asthma phenotypes were associated with recycling sphingolipids. Modification of asthma risk factors may play an important role in regulating sphingolipid homeostasis via ceramides to affect asthma. Further function work may validate the observed associations.


Subject(s)
Asthma , Sphingolipids , Child , Humans , Sphingolipids/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Ceramides/metabolism , Asthma/etiology , Asthma/genetics , Risk Factors
16.
Women Health ; 64(2): 109-120, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38148599

ABSTRACT

Endometriosis (EMS) is a chronic inflammatory disorder of high incidence that causes serious reproductive consequences. High estrogen production is a consistently observed endocrine feature of EMS. The present study aims to probe the molecular mechanism of G protein-coupled estrogen receptor 1 (GPER) in the invasion and migration of ectopic endometrial stromal cells (Ect-ESCs) and provides a new rationale for EMS treatment. Eutopic and ectopic endometrial tissues were collected from 41 EMS patients, and primary ESCs were separated. GPER, miR-16-5p, and miR-103a-3p levels in cells and tissues were determined by qRT-PCR or Western blot assay. Cell viability, proliferation, invasion, and migration were evaluated by CCK-8, colony formation, and Transwell assays. The upstream miRNAs of GPER were predicted by databases, and dual-luciferase assay was performed to validate the binding of miR-16-5p and miR-103a-3p to GPER 3'UTR. GPER was highly expressed in EMS tissues and Ect-ESCs. Inhibition of GPER mitigated the proliferation, invasion, and migration of Ect-ESCs. GPER was regulated by miR-16-5p and miR-103a-3p. Overexpression of miR-16-5p and miR-103a-3p negatively regulated GPER expression and inhibited the invasion and migration of Ect-ESC. In conclusion, GPER promoted the invasion and migration of Ect-ESCs, which can be reversed by upstream miR-16-5p and miR-103a-3p.


Subject(s)
Endometriosis , MicroRNAs , Female , Humans , Cell Movement/genetics , Estrogens , MicroRNAs/genetics , MicroRNAs/metabolism , Stromal Cells/metabolism
17.
Front Oncol ; 13: 1180186, 2023.
Article in English | MEDLINE | ID: mdl-37664063

ABSTRACT

Objectives: To evaluate the magnetic resonance imaging (MRI) features of bile duct adenoma. Methods: The data of 28 patients [with 32 pathologically confirmed bile duct adenomas, including 15 with malignant change (malignant group) and 17 without malignant change (benign adenoma group)] were retrospectively reviewed. Abdominal MRI was performed for all patients; in addition, dynamic enhanced MRI was performed for 18 lesions. The MRI features, including lesion location, maximum size, morphology, signal characteristics, enhancement type, and appearance of the bile duct, were assessed by two abdominal radiologists. Apparent diffusion coefficient (ADC) values were measured and compared. Results: Of the 32 bile duct adenomas, 22 (68.75%) involved the common bile duct (CBD). While 14/32 (43.75%) lesions presented as focal eccentric-type masses, 9/32 (28.13%) presented as plaque-like masses, 4/32 (12.50%) as bile duct casting masses, and 5/32 (15.62%) as infiltrative masses. A frond-like superficial appearance was seen in 8/32 (25%) lesions. Infiltrative masses were significantly more common in the malignant group than in the benign adenoma group (P = 0.015). While 23/32 (71.88%) lesions were isointense on T1-weighted imaging (T1WI), 24/32 (75%) were hyperintense on T2-weighted imaging (T2WI). Bile duct dilatation was present upstream of the lesion in all cases. Bile duct dilatation at the lesion was seen in 24/32 (75%) cases and downstream of the lesion in 6/32 (18.75%) cases. Of the 18 lesions that underwent dynamic enhanced MRI, 14 (77.78%) showed moderate enhancement and 13 (72.22%) showed persistent enhancement. On diffusion-weighted imaging (DWI), 27/32 (84.37%) lesions showed hyperintensity. Mean ADC value was comparable between the malignant group and the benign adenoma group (P = 0.156). Conclusions: Bile duct adenoma primarily presents as intraductal growth in the CBD, usually with bile duct dilatation at the lesion site or upstream to it. Most lesions are isointense on T1WI, are hyperintense on T2WI and DWI, and show moderate enhancement. A superficial frond-like appearance of the lesion and bile duct dilatation at the lesion or downstream to it might be characteristics of bile duct adenoma. An infiltrative appearance might indicate malignant transformation.

18.
EBioMedicine ; 96: 104791, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37734204

ABSTRACT

BACKGROUND: As new infectious diseases (ID) emerge and others continue to mutate, there remains an imminent threat, especially for vulnerable individuals. Yet no generalizable framework exists to identify the at-risk group prior to infection. Metabolomics has the advantage of capturing the existing physiologic state, unobserved via current clinical measures. Furthermore, metabolomics profiling during acute disease can be influenced by confounding factors such as indications, medical treatments, and lifestyles. METHODS: We employed metabolomic profiling to cluster infection-free individuals and assessed their relationship with COVID severity and influenza incidence/recurrence. FINDINGS: We identified a metabolomic susceptibility endotype that was strongly associated with both severe COVID (ORICUadmission = 6.7, p-value = 1.2 × 10-08, ORmortality = 4.7, p-value = 1.6 × 10-04) and influenza (ORincidence = 2.9; p-values = 2.2 × 10-4, ßrecurrence = 1.03; p-value = 5.1 × 10-3). We observed similar severity associations when recapitulating this susceptibility endotype using metabolomics from individuals during and after acute COVID infection. We demonstrate the value of using metabolomic endotyping to identify a metabolically susceptible group for two-and potentially more-IDs that are driven by increases in specific amino acids, including microbial-related metabolites such as tryptophan, bile acids, histidine, polyamine, phenylalanine, and tyrosine metabolism, as well as carbohydrates involved in glycolysis. INTERPRETATIONS: These metabolites may be identified prior to infection to enable protective measures for these individuals. FUNDING: The Longitudinal EMR and Omics COVID-19 Cohort (LEOCC) and metabolomic profiling were supported by the National Heart, Lung, and Blood Institute and the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health.


Subject(s)
COVID-19 , Communicable Diseases , Influenza, Human , Humans , Metabolome , Prospective Studies , Influenza, Human/epidemiology , Metabolomics , Communicable Diseases/etiology
20.
Chemosphere ; 324: 138228, 2023 May.
Article in English | MEDLINE | ID: mdl-36878362

ABSTRACT

Exposure to per- and polyfluoroalkyl substances (PFAS) through the environment can lead to harmful health outcomes and the development of disease. However, little is known about how PFAS impact underlying biology that contributes to these adverse health effects. The metabolome represents the end product of cellular processes and has been used previously to understand physiological changes that lead to disease. In this study, we investigated whether exposure to PFAS was associated with the global, untargeted metabolome. In a cohort of 459 pregnant mothers and 401 children, we quantified plasma concentrations of six individual PFAS- PFOA, PFOS, PFHXS, PFDEA, and PFNA- and performed plasma metabolomic profiling by UPLC-MS. In adjusted linear regression analysis, we found associations between plasma PFAS and perturbations in lipid and amino acid metabolites in both mothers and children. In mothers, metabolites of 19 lipid pathways and 8 amino acid pathways were significantly associated with PFAS exposure at an FDR<0.05 threshold; in children, metabolites of 28 lipid pathways and 10 amino acid pathways exhibited significant associations at FDR<0.05 with PFAS exposure. Our investigation found that metabolites of the Sphingomyelin, Lysophospholipid, Long Chain Polyunsaturated Fatty Acid (n3 and n6), Fatty Acid- Dicarboxylate, and Urea Cycle showed the most significant associations with PFAS, suggesting these may be particular pathways of interest in the physiological response to PFAS. To our knowledge, this is the first study to characterize associations between the global metabolome and PFAS across multiple periods in the life course to understand impacts on underlying biology, and the findings presented here are relevant in understanding how PFAS disrupt normal biological function and may ultimately give rise to harmful health effects.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Female , Child , Pregnancy , Humans , Chromatography, Liquid , Tandem Mass Spectrometry , Fatty Acids , Amino Acids
SELECTION OF CITATIONS
SEARCH DETAIL