Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Nano Lett ; 24(36): 11179-11186, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39213606

ABSTRACT

Altermagnets, distinct from conventional ferromagnets or antiferromagnets, have recently attracted attention as the third category of collinear magnets, which exhibit the coexistence of zero net magnetization and spin polarization due to their unique lattice symmetries. Meanwhile, the additional layer degrees of freedom in multilayer sliding ferroelectrics offer opportunities for coupling with lattice symmetries, paving the way for an innovative approach to constructing multiferroic lattices. In this study, altermagnetic tuning in SnS2/MnPSe3/SnS2 heterostructures is achieved by breaking and restoration of lattice inversion symmetry through sliding ferroelectric switching. First-principles calculations reveal that the spin density and corresponding time-reversal symmetry of MnPSe3 can be manipulated by lattice symmetry, triggering phase transitions between antiferromagnetism and altermagnetism. This research establishes a novel form of magnetoelectric coupling mediated by lattice symmetry and provides a theoretical basis for the design of miniature information processing and memory devices based on altermagnetism.

2.
Braz J Med Biol Res ; 57: e13796, 2024.
Article in English | MEDLINE | ID: mdl-39166606

ABSTRACT

Previous studies show that glycogen synthase kinase 3ß (GSK3B) plays an important role in tumorigenesis. However, its role in cervical cancer is unclear. The present study silenced GSK3B with siRNAs and/or chemical inhibitors to determine its role in HeLa cervical cancer cell proliferation and migration as well as in xenograft tumor growth. Cell Counting Kit (CCK)-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to determine cell survival and proliferation. Scratch and Transwell® assays were used to evaluate cell migration. Xenograft tumors were used to evaluate the effect of GSK3B on tumor growth. Transcriptomic sequencing was used to clarify the mechanisms underlying the foregoing processes. Public databases and clinical specimens showed that GSK3B was upregulated in cervical cancer tissues and correlated with poor prognosis. In vitro experiments indicated that GSK3B inhibition reduced cell viability, proliferation, and migration. In vivo experiments demonstrated that GSK3B inhibition slowed xenograft tumor growth. Transcriptomic sequencing revealed that GSK3B inhibition modulated the phosphatidylinositol 3-carboxykinase (PI3K)/protein kinase B (Akt) and extracellular matrix (ECM)-receptor interaction signaling pathways. GSK3B inhibition decreased the protein levels of phosphorylated PI3K and Akt and the levels of mesenchymal markers but increased those of epithelial markers. An activator of the PI3K/Akt signaling pathway counteracted the suppressive effects of GSK3B inhibition on HeLa cell viability and proliferation and on PI3K/Akt signaling. Our data suggested that GSK3B regulated cervical cancer cell proliferation and migration by modulating the PI3K/Akt signaling pathway and epithelial-to-mesenchymal transition (EMT).


Subject(s)
Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Glycogen Synthase Kinase 3 beta , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Uterine Cervical Neoplasms , Epithelial-Mesenchymal Transition/drug effects , Female , Cell Proliferation/drug effects , Cell Movement/drug effects , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Humans , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Animals , HeLa Cells , Phosphatidylinositol 3-Kinases/metabolism , Mice , Mice, Nude , Xenograft Model Antitumor Assays
3.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001017

ABSTRACT

The transition to smart manufacturing introduces heightened complexity in regard to the machinery and equipment used within modern collaborative manufacturing landscapes, presenting significant risks associated with equipment failures. The core ambition of smart manufacturing is to elevate automation through the integration of state-of-the-art technologies, including artificial intelligence (AI), the Internet of Things (IoT), machine-to-machine (M2M) communication, cloud technology, and expansive big data analytics. This technological evolution underscores the necessity for advanced predictive maintenance strategies that proactively detect equipment anomalies before they escalate into costly downtime. Addressing this need, our research presents an end-to-end platform that merges the organizational capabilities of data warehousing with the computational efficiency of Apache Spark. This system adeptly manages voluminous time-series sensor data, leverages big data analytics for the seamless creation of machine learning models, and utilizes an Apache Spark-powered engine for the instantaneous processing of streaming data for fault detection. This comprehensive platform exemplifies a significant leap forward in smart manufacturing, offering a proactive maintenance model that enhances operational reliability and sustainability in the digital manufacturing era.

4.
Microbiol Spectr ; 12(8): e0072524, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39007718

ABSTRACT

Cryptococcal meningitis (CM), a common and serious opportunistic infection mostly caused by Cryptococcus neoformans, is primarily treated with fluconazole. Nevertheless, Cryptococcus neoformans strains that undergo repeated exposure to azoles can gradually acquire heteroresistance to fluconazole. The management of this specific CM infection poses a substantial challenge. Determining a globally accepted definition for fluconazole heteroresistance and developing effective and prompt methods for identifying heteroresistance is of utmost importance. We collected data on the clinical and epidemiological characteristics of patients diagnosed with CM. All the available Cryptococcus neoformans strains isolated from these patients were collected and subjected to antifungal susceptibility testing and evaluation of fluconazole heteroresistance. AIDS was present in 40.5% of the patients, whereas 24.1% did not have any underlying diseases. Patients with chronic diseases or impaired immune systems are susceptible to infection by Cryptococcus neoformans, a fungus that frequently (39.6%, 19/48) shows heteroresistance to fluconazole, as confirmed by population analysis profile (PAP).IMPORTANCEFluconazole heteroresistance poses a significant threat to the efficacy of fluconazole in treating cryptococcal meningitis (CM). Unfortunately, the standard broth microdilution method often misses the subtle percentages of subpopulations exhibiting heteroresistance. While the population analysis profile (PAP) method is esteemed as the gold standard, its time-consuming and labor-intensive nature makes it impractical for routine clinical use. In contrast, the Kirby-Bauer (KB) disk diffusion method offers a simple and effective screening solution. Our study highlights the value of KB over PAP and minimum inhibitory concentration (MIC) by demonstrating that when adjusting the inoculum concentration to 1.0 McFarland and subjecting samples to a 72-hour incubation period at 35°C, the KB method closely mirrors the outcomes of the PAP approach in detecting fluconazole heteroresistance. This optimization of the KB method not only enhances assay efficiency but also provides a blueprint for developing a timely and effective strategy for identifying heteroresistance.


Subject(s)
Antifungal Agents , Cryptococcus neoformans , Drug Resistance, Fungal , Fluconazole , Hospitals, Teaching , Meningitis, Cryptococcal , Microbial Sensitivity Tests , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/isolation & purification , Cryptococcus neoformans/genetics , Meningitis, Cryptococcal/microbiology , Meningitis, Cryptococcal/drug therapy , Meningitis, Cryptococcal/epidemiology , Fluconazole/pharmacology , Humans , Antifungal Agents/pharmacology , China/epidemiology , Adult , Female , Male , Middle Aged , Aged , Young Adult , Adolescent
5.
Braz. j. med. biol. res ; 57: e13796, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1568973

ABSTRACT

Previous studies show that glycogen synthase kinase 3β (GSK3B) plays an important role in tumorigenesis. However, its role in cervical cancer is unclear. The present study silenced GSK3B with siRNAs and/or chemical inhibitors to determine its role in HeLa cervical cancer cell proliferation and migration as well as in xenograft tumor growth. Cell Counting Kit (CCK)-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to determine cell survival and proliferation. Scratch and Transwell® assays were used to evaluate cell migration. Xenograft tumors were used to evaluate the effect of GSK3B on tumor growth. Transcriptomic sequencing was used to clarify the mechanisms underlying the foregoing processes. Public databases and clinical specimens showed that GSK3B was upregulated in cervical cancer tissues and correlated with poor prognosis. In vitro experiments indicated that GSK3B inhibition reduced cell viability, proliferation, and migration. In vivo experiments demonstrated that GSK3B inhibition slowed xenograft tumor growth. Transcriptomic sequencing revealed that GSK3B inhibition modulated the phosphatidylinositol 3-carboxykinase (PI3K)/protein kinase B (Akt) and extracellular matrix (ECM)-receptor interaction signaling pathways. GSK3B inhibition decreased the protein levels of phosphorylated PI3K and Akt and the levels of mesenchymal markers but increased those of epithelial markers. An activator of the PI3K/Akt signaling pathway counteracted the suppressive effects of GSK3B inhibition on HeLa cell viability and proliferation and on PI3K/Akt signaling. Our data suggested that GSK3B regulated cervical cancer cell proliferation and migration by modulating the PI3K/Akt signaling pathway and epithelial-to-mesenchymal transition (EMT).

6.
Nano Lett ; 23(23): 11280-11287, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38047724

ABSTRACT

2D van der Waals (vdW) materials offer infinite possibilities for constructing unique ferroelectrics through simple layer stacking and rotation. In this work, we stack nonferroelectric GeS2 and ferroelectric CuInP2S6 to form heterostructures by combining sliding ferroelectric polarization with displacement ferroelectric polarization to achieve multiple polarization states. First-principles calculations reveal that the polarization reversal of the CuInP2S6 component in the GeS2/CuInP2S6/GeS2 heterostructure can simultaneously drive the switching of sliding ferroelectric polarization, displaying a robust coupling of the two polarizations and leading to the overall polarization switching. Based on this, ferroelectric arrays with a density of 6.55 × 1012 cm-2 (equivalent to a storage density of 0.7 TB cm-2) were constructed in a moiré superlattice, and the polarization strength of array elements was 11.77 pC/m, higher than that of all reported 2D vdW out-of-plane ferroelectrics. High density, large polarization, and electrically switchable array elements in ferroelectric arrays provide unprecedented opportunities to design 2D high-density nonvolatile ferroelectric memories.

7.
Infect Drug Resist ; 16: 3659-3669, 2023.
Article in English | MEDLINE | ID: mdl-37313262

ABSTRACT

Background: This study aimed to assess the effect of infection patterns on the outcomes of patients with hematological malignancies (HM) and to identify the determinants of in-hospital mortality. Methods: A case-control study was retrospectively conducted in a tertiary teaching hospital in Chongqing, Southwest China from 2011 to 2020. Clinical characteristics, microbial findings, and outcomes of HM patients with infections were retrieved from the hospital information system. Chi-square or Fisher's exact test was adopted to test the significance of mortality rate. Kaplan-Meier survival analysis and Log rank test were applied to evaluate and compare the 30-day survival rates of those groups. Binary logistic regression, Cox proportional hazards regression, and receiver operating characteristic curves were used to investigate the determinants of in-hospital mortality. Results: Of 1,570 enrolled participants, 43.63% suffered from acute myeloid leukemia, 69.62% received chemotherapy, and 25.73% had hematopoietic stem cell transplantation (HSCT). Microbial infection was documented in 83.38% of participants. Co-infection and septic shock were reported in 32.87% and 5.67% of participants, respectively. Patients with septic shock suffered a significantly lower 30-day survival rate, while those with distinct types of pathogens or co-infections had a comparable 30-day survival rate. The all-cause in-hospital mortality was 7.01% and higher mortality rate was observed in patients with allo-HSCT (7.20%), co-infection (9.88%), and septic shock (33.71%). Cox proportional hazards regression illustrated that elderly age, septic shock, and elevated procalcitonin (PCT) were independent predictors of in-hospital mortality. A PCT cut-off value of 0.24 ng/mL predicted in-hospital mortality with a sensitivity of 77.45% and a specificity of 59.80% (95% CI = 0.684-0.779, P<0.0001). Conclusion: Distinct infectious patterns of HM inpatients were previously unreported in Southwest China. It was the severity of infection, not co-infection, source of infection, or type of causative pathogen that positively related to poor outcome. PCT guided early recognition and treatment of septic shock were advocated.

8.
AMB Express ; 13(1): 50, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37243708

ABSTRACT

Gonorrhea, caused by Neisseria gonorrhoeae (N. gonorrhoeae), is a persistent global public health threat. The development of low-cost, point-of-care testing is crucial for gonorrhea control, especially in regions with limited medical facilities. In this study, we integrated CRISPR/Cas12a reaction with recombinase polymerase amplification (RPA) to provide a simple and adaptable molecular detection method for N. gonorrhoeae. The RPA-Cas12a-based detection system developed in this study enables rapid detection of N. gonorrhoeae within 1 h without the use of specialized equipment. This method is highly specific for identifying N. gonorrhoeae without cross-reactivity with other prevalent pathogens. Furthermore, in the evaluation of 24 clinical samples, the detection system demonstrates a 100% concordance rate with traditional culture, which is being used clinically as a reference method. Overall, the RPA-Cas12a-based N. gonorrhoeae detection has the advantages of rapidity, portability, low-cost, no special equipment required, and strong operability, and has a high potential for application as a self-testing and point-of-care diagnosis, which is critical for the clinical management of gonorrhea in developing countries lacking medical equipment.

12.
Microbiol Spectr ; : e0487022, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36943040

ABSTRACT

In order to ensure the prevention and control of methicillin-resistant Staphylococcus aureus (MRSA) infection, rapid and accurate detection of pathogens and their resistance phenotypes is a must. Therefore, this study aimed to develop a fast and precise nucleic acid detection platform for identifying S. aureus and MRSA. We initially constructed a CRISPR-Cas12a detection system by designing single guide RNAs (sgRNAs) specifically targeting the thermonuclease (nuc) and mecA genes. To increase the sensitivity of the CRISPR-Cas12a system, we incorporated PCR, loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA). Subsequently, we compared the sensitivity and specificity of the three amplification methods paired with the CRISPR-Cas12a system. Finally, the clinical performance of the methods was tested by analyzing the fluorescence readout of 111 clinical isolates. In order to visualize the results, lateral-flow test strip technology, which enables point-of-care testing, was also utilized. After comparing the sensitivity and specificity of three different methods, we determined that the nuc-LAMP-Cas12a and mecA-LAMP-Cas12a methods were the optimal detection methods. The nuc-LAMP-Cas12a platform showed a limit of detection (LOD) of 10 aM (~6 copies µL-1), while the mecA-LAMP-Cas12a platform demonstrated a LOD of 1 aM (~1 copy µL-1). The LOD of both platforms reached 4 × 103 fg/µL of genomic DNA. Critical evaluation of their efficiencies on 111 clinical bacterial isolates showed that they were 100% specific and 100% sensitive with both the fluorescence readout and the lateral-flow readout. Total detection time for the present assay was approximately 80 min (based on fluorescence readout) or 85 min (based on strip readout). These results indicated that the nuc-LAMP-Cas12a and mecA-LAMP-Cas12a platforms are promising tools for the rapid and accurate identification of S. aureus and MRSA. IMPORTANCE The spread of methicillin-resistant Staphylococcus aureus (MRSA) poses a major threat to global health. Isothermal amplification combined with the trans-cleavage activity of Cas12a has been exploited to generate diagnostic platforms for pathogen detection. Here, we describe the design and clinical evaluation of two highly sensitive and specific platforms, nuc-LAMP-Cas12a and mecA-LAMP-Cas12a, for the detection of S. aureus and MRSA in 111 clinical bacterial isolates. With a limit of detection (LOD) of 4 × 103 fg/µL of genomic DNA and a turnaround time of 80 to 85 min, the present assay was 100% specific and 100% sensitive using either fluorescence or the lateral-flow readout. The present assay promises clinical application for rapid and accurate identification of S. aureus and MRSA in limited-resource settings or at the point of care. Beyond S. aureus and MRSA, similar CRISPR diagnostic platforms will find widespread use in the detection of various infectious diseases, malignancies, pharmacogenetics, food contamination, and gene mutations.

13.
Anal Chim Acta ; 1247: 340881, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36781248

ABSTRACT

Current single-base mutation detection approaches are time-consuming, labor-intensive, and costly. This highlights the critical need for speedy and accurate technology capable of detecting single-base alterations. Using clustered regularly interspaced short palindromic repeats/associated protein 12a (CRISPR/Cas12a), two fundamental approaches for getting 100% differentiation of single-base mutations have been established, by which fluorescence signals could be detected for variants but not for wild strains. The first method required both polymerase chain reaction (PCR) and CRISPR/Cas12a cleavage: By introducing a mismatched base at the 3' end of the primers and adjusting the PCR settings, the wild strain strand amplifications were completely blocked prior to CRISPR/Cas12a cleavage. The parameters for Method 1 (PCR + CRISPR/Cas12a) could be easily controlled and adjusted to attain a sensitivity of one copy (about 6 copies µL-1). The second method included isothermal recombinase polymerase amplification (RPA) and CRISPR/Cas12a cleavage: By introducing an extra mismatched base adjacent to the single-base mutant site by RPA (IMAS-RPA), the RPA products from the wild strains were rendered incapable of triggering the cleavage activity of CRISPR/Cas12a. Method 2 (IMAS-RPA) was rapid and easy to implement (can be finished within 1 h). Because each method has its own set of advantages, the laboratory environment-appropriate methods can be selected independently. Both approaches are expected to aid in clinical diagnosis to some extent in the near future.


Subject(s)
CRISPR-Cas Systems , Recombinases , CRISPR-Cas Systems/genetics , Proteolysis , Mutation , DNA Primers
14.
Mol Med Rep ; 27(2)2023 Feb.
Article in English | MEDLINE | ID: mdl-36524364

ABSTRACT

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the cell migration assay data shown in Fig. 2C were strikingly similar to data that had appeared in different form in other articles by different authors. Owing to the fact that the contentious data in the above article had already been published elsewhere, or were already under consideration for publication, prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 19: 1926­1934, 2019; DOI: 10.3892/mmr.2019.9830].

16.
Front Med (Lausanne) ; 9: 827474, 2022.
Article in English | MEDLINE | ID: mdl-35360726

ABSTRACT

The dissemination of carbapenemase-producing Enterobacterales (CPE) is worrisome given their scarce treatment options. CPE bloodstream infections (BSIs) had a high mortality rate in adults, and there was little data on pediatric CPE-BSIs around the world. We comprehensively explored the differences in the clinical and microbiological characteristics between pediatric and adult CPE-BSIs. Forty-eight pediatric and 78 adult CPE-BSIs cases were collected. All-cause 30 day-mortality in children with CPE-BSIs (14.6%, 7/48) was significantly lower than that in adult patients (42.3%, 33/78, p = 0.001). The subgroup in adults empirically treated with tigecycline as an active drug displayed a significantly higher 30-days crude mortality (63.3%, 19/30) than the subgroup treated without tigecycline (29.2%, 14/48, p = 0.003). K. pneumoniae was the most prevalent species in both the pediatric (45.8%, 22/48) and adult populations (64.1%, 50/78), with discrepant carbapenemase genes in each population: 95.4% (21/22) of the pediatric K. pneumoniae isolates carried bla NDM, while 82.0% (41/50) of the adult strains harbored bla KPC. The ratio of E. coli in children (37.5%) was significantly higher than that in adults (12.8%, p = 0.002). In both populations, the majority of E. coli expressed bla NDM, particularly bla NDM-5. With statistical significance, bla NDM was much more common in children (95.8%, 46/48) than in adults (34.6%, 27/78). The rate of multiple-heteroresistance phenotypes in children was as high as 87.5%, which was much lower in adults (57.1%). Agar dilution checkboard experiment against one pediatric carbapenemase-producing E. coli isolates showed that the combination of amikacin and fosfomycin yielded an additive effect. Overall, K. pneumoniae was the most common CPE-BSIs pathogen in both populations, with NDM-producing K. pneumoniae and KPC-producing ST11 K. pneumoniae being the most prevalent species in children and adults, respectively. E. coli was more prevalent in children than in adults, yet bla NDM-5 was the most common carbapenem-resistant mechanism in E. coli in both populations. The wide range of multiple-heteroresistance combination traits found in different pathogen species from different host populations should provide a good foundation for future combination therapy design. Further investigations from more CPE isolates of various species are needed to evaluate the possible in vitro partial synergy of the amikacin and fosfomycin combination.

17.
Nanomaterials (Basel) ; 12(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35269218

ABSTRACT

Dielectric capacitors with ultrahigh power density are highly desired in modern electrical and electronic systems. However, their comprehensive performances still need to be further improved for application, such as recoverable energy storage density, efficiency and temperature stability. In this work, new lead-free bismuth layer-structured ferroelectric thin films of CaBi4Ti4O15-Bi(Fe0.93Mn0.05Ti0.02)O3 (CBTi-BFO) were prepared via chemical solution deposition. The CBTi-BFO film has a small crystallization temperature window and exhibits a polycrystalline bismuth layered structure with no secondary phases at annealing temperatures of 500-550 °C. The effects of annealing temperature on the energy storage performances of a series of thin films were investigated. The lower the annealing temperature of CBTi-BFO, the smaller the carrier concentration and the fewer defects, resulting in a higher intrinsic breakdown field strength of the corresponding film. Especially, the CBTi-BFO film annealed at 500 °C shows a high recoverable energy density of 82.8 J·cm-3 and efficiency of 78.3%, which can be attributed to the very slim hysteresis loop and a relatively high electric breakdown strength. Meanwhile, the optimized CBTi-BFO film capacitor exhibits superior fatigue endurance after 107 charge-discharge cycles, a preeminent thermal stability up to 200 °C, and an outstanding frequency stability in the range of 500 Hz-20 kHz. All these excellent performances indicate that the CBTi-BFO film can be used in high energy density storage applications.

18.
BMC Cancer ; 22(1): 10, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34979987

ABSTRACT

BACKGROUND: New evidence from clinical and fundamental researches suggests that SNHG7 is involved in the occurrence and development of carcinomas. And the increased levels of SNHG7 are associated with poor prognosis in various kinds of tumors. However, the small sample size was the limitation for the prognostic value of SNHG7 in clinical application. The aim of the present meta-analysis was to conduct a qualitative analysis to explore the prognostic value of SNHG7 in various cancers. METHODS: Articles related to the SNHG7 as a prognostic biomarker for cancer patients, were comprehensive searched in several electronic databases. The enrolled articles were qualified via the preferred reporting items for systematic reviews and meta-analysis of observational studies in epidemiology checklists. Additionally, an online database based on The Cancer Genome Atlas (TCGA) was further used to validate our results. RESULTS: We analyzed 2418 cancer patients that met the specified criteria. The present research indicated that an elevated SNHG7 expression level was significantly associated with unfavorable overall survival (OS) (HR = 2.45, 95% CI: 2.12-2.85, p <0.001). Subgroup analysis showed that high expression levels of SNHG7 were also significantly associated with unfavorable OS in digestive system cancer (HR = 2.31, 95% CI: 1.90-2.80, p <0.001) and non-digestive system cancer (HR = 2.67, 95% CI: 2.12-3.37, p <0.001). Additionally, increased SNHG7 expression was found to be associated with tumor stage and progression (III/IV vs. I/II: HR = 1.76, 95% CI: 1.57-1.98, p <0.001). Furthermore, elevated SNHG7 expression significantly predicted lymph node metastasis (LNM) (HR = 1.98, 95% CI: 1.74-2.26, p <0.001) and distant metastasis (DM) (HR = 2.49, 95% CI: 1.88-3.30, p <0.001) respectively. No significant heterogeneity was observed among these studies. SNHG7 was significantly upregulated in four cancers and the elevated expression of SNHG7 predicted shorter OS in four cancers, worse DFS in five malignancies and worse PFI in five carcinomas based on the validation using the GEPIA on-line analysis tool. CONCLUSIONS: The present analysis suggests that elevated SNHG7 is significantly associated with unfavorable OS, tumor progression, LNM and DM in various carcinomas, and may be served as a promising biomarker to guide therapy for cancer patients.


Subject(s)
Carcinoma/genetics , Carcinoma/mortality , Neoplasms/genetics , Neoplasms/mortality , RNA, Long Noncoding/genetics , Biomarkers, Tumor/genetics , Computational Biology , Humans , Lymphatic Metastasis/genetics , Predictive Value of Tests , Prognosis , Proportional Hazards Models
19.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34835806

ABSTRACT

Fe-doped 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) thin films were grown in Pt/Ti/SiO2/Si substrate by a chemical solution deposition method. Effects of the annealing temperature and doping concentration on the crystallinity, microstructure, ferroelectric and dielectric properties of thin film were investigated. High (111) preferred orientation and density columnar structure were achieved in the 2% Fe-doped PMN-PT thin film annealed at 650 °C. The preferred orientation was transferred to a random orientation as the doping concentration increased. A 2% Fe-doped PMN-PT thin film showed the effectively reduced leakage current density, which was due to the fact that the oxygen vacancies were effectively restricted and a transition of Ti4+ to Ti3+ was prevented. The optimal ferroelectric properties of 2% Fe-doped PMN-PT thin film annealed at 650 °C were identified with slim polarization-applied field loops, high saturation polarization (Ps = 78.8 µC/cm2), remanent polarization (Pr = 23.1 µC/cm2) and low coercive voltage (Ec = 100 kV/cm). Moreover, the 2% Fe-doped PMN-PT thin film annealed at 650 °C showed an excellent dielectric performance with a high dielectric constant (εr ~1300 at 1 kHz).

20.
Front Cell Infect Microbiol ; 11: 755763, 2021.
Article in English | MEDLINE | ID: mdl-34778107

ABSTRACT

Objectives: To assess the efficacy of aztreonam-avibactam-auranofin (ATM-AVI-AUR) against a collection of 88 carbapenemase-producing Enterobacterales (CPE) clinical isolates and 6 in vitro selected ATM-AVI-resistant CPE with CMY-16 Tyr150Ser and Asn346His mutants or transformants. Methods: MICs of imipenem, ceftazidime-avibact8am (CAZ-AVI), ATM-AVI, CAZ-AVI-AUR and ATM-AVI-AUR were determined via the broth microdilution method. Genetic background and carbapenemase genes were determined by PCR and Sanger sequencing. Results: AUR alone showed little antibacterial activity with AUR MICs were greater than 64 µg/mL for all the 88 clinical CPE isolates. The addition of AUR (16 µg/mL) resulted in an 3-folding dilutions MIC reduction of ATM-AVI MIC50 (0.5 to 0.0625 µg/mL) and a 2-folding dilutions MIC reduction of MIC90 (1 to 0.25 µg/mL) against all 88 clinical CPE isolates, respectively. Notably, the reduced ATM-AVI MIC values were mainly found in MBL-producers, and the MIC50 and MIC90 reduced by 2-folding dilutions (0.25 to 0.0625 µg/mL) and 3-folding dilutions (2 to 0.25 µg/mL) respectively by AUR among the 51 MBL-producers. By contrast, the addition of AUR did not showed significant effects on ATM-AVI MIC50 (0.0625 µg/mL) and MIC90 (0.125 µg/mL) among single KPC-producers. Interestingly, the addition of AUR restored the ATM-AVI susceptibility against the 6 in vitro selected ATM-AVI-resistant CMY-16 Tyr150Ser and Asn346His mutants or transfromants, with the MICs reduced from ≥32 µg/mL (32->256 µg/mL) to ≤8 µg/mL (0.0625-8 µg/mL). Conclusions: Our results demonstrated that AUR potentiated the activities of CAZ-AVI and ATM-AVI against MBL-producing isolates in vitro. Importantly, AUR restored the ATM-AVI activity against ATM-AVI resistant mutant strains. As a clinically approved drug, AUR might be repurposed in combination with ATM-AVI to treat infections caused by highly resistant MBL-producing Enterobacterales.


Subject(s)
Auranofin , Aztreonam , Azabicyclo Compounds/pharmacology , Aztreonam/pharmacology , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL