Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
BMC Infect Dis ; 24(1): 803, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123113

ABSTRACT

BACKGROUND: Predicting an individual's risk of death from COVID-19 is essential for planning and optimising resources. However, since the real-world mortality rate is relatively low, particularly in places like Hong Kong, this makes building an accurate prediction model difficult due to the imbalanced nature of the dataset. This study introduces an innovative application of graph convolutional networks (GCNs) to predict COVID-19 patient survival using a highly imbalanced dataset. Unlike traditional models, GCNs leverage structural relationships within the data, enhancing predictive accuracy and robustness. By integrating demographic and laboratory data into a GCN framework, our approach addresses class imbalance and demonstrates significant improvements in prediction accuracy. METHODS: The cohort included all consecutive positive COVID-19 patients fulfilling study criteria admitted to 42 public hospitals in Hong Kong between January 23 and December 31, 2020 (n = 7,606). We proposed the population-based graph convolutional neural network (GCN) model which took blood test results, age and sex as inputs to predict the survival outcomes. Furthermore, we compared our proposed model to the Cox Proportional Hazard (CPH) model, conventional machine learning models, and oversampling machine learning models. Additionally, a subgroup analysis was performed on the test set in order to acquire a deeper understanding of the relationship between each patient node and its neighbours, revealing possible underlying causes of the inaccurate predictions. RESULTS: The GCN model was the top-performing model, with an AUC of 0.944, considerably outperforming all other models (p < 0.05), including the oversampled CPH model (0.708), linear regression (0.877), Linear Discriminant Analysis (0.860), K-nearest neighbours (0.834), Gaussian predictor (0.745) and support vector machine (0.847). With Kaplan-Meier estimates, the GCN model demonstrated good discriminability between low- and high-risk individuals (p < 0.0001). Based on subanalysis using the weighted-in score, although the GCN model was able to discriminate well between different predicted groups, the separation was inadequate between false negative (FN) and true negative (TN) groups. CONCLUSION: The GCN model considerably outperformed all other machine learning methods and baseline CPH models. Thus, when applied to this imbalanced COVID survival dataset, adopting a population graph representation may be an approach to achieving good prediction.


Subject(s)
COVID-19 , Neural Networks, Computer , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/diagnosis , Male , Female , Middle Aged , Hong Kong/epidemiology , Aged , Adult , Hematologic Tests/methods , Machine Learning , Proportional Hazards Models , Cohort Studies
2.
Eur J Clin Pharmacol ; 80(8): 1141-1150, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38605248

ABSTRACT

BACKGROUND: The efficacy and safety of direct oral anticoagulants (DOACs) in atrial fibrillation (AF) patients with impaired liver function (ILF) have not been sufficiently studied. The aim of this study was to evaluate the efficacy and safety of DOACs for stroke prevention in patients with AF and ILF. METHOD: This study was based on data from 15 centers in China, including 4,982 AF patients. The patients were divided into 2 subgroups based on their liver function status: patients with normal liver function (NLF)(n = 4213) and patients with ILF (n = 769). Logistic regression analysis was used to investigate the risk of total bleeding, major bleeding, thromboembolism, and all-cause deaths in AF patients with NLF and ILF after taking dabigatran or rivaroxaban, respectively. RESULTS: Among AF patients treated with dabigatran or rivaroxaban, patients with ILF were associated with significantly higher major bleeding, compared with NLF patients (aOR: 4.797; 95% CI: 2.224-10.256; P < 0.001). In patients with NLF, dabigatran (n = 2011) had considerably lower risk of total bleeding than rivaroxaban (n = 2202) (aOR: 1.23; 95% CI: 1.002-1.513; P = 0.049). In patients with ILF, dabigatran (n = 321) significantly favored lower risks of major bleeding compared with rivaroxaban(n = 448) (aOR: 5.484; 95% CI: 1.508-35.269; P = 0.026). CONCLUSION: After using dabigatran or rivaroxaban, patients with ILF had remarkably increased risk of major bleeding compared with patients with NLF. In AF patients with NLF, dabigatran had the distinct strength of significantly reduced risk of total bleeding compared with rivaroxaban. In patients with AF and ILF, dabigatran use was associated with lower risk for major bleeding compared with rivaroxaban.


Subject(s)
Atrial Fibrillation , Dabigatran , Hemorrhage , Rivaroxaban , Humans , Dabigatran/adverse effects , Dabigatran/therapeutic use , Dabigatran/administration & dosage , Rivaroxaban/adverse effects , Rivaroxaban/therapeutic use , Rivaroxaban/administration & dosage , Atrial Fibrillation/drug therapy , Atrial Fibrillation/complications , Male , Female , Aged , Hemorrhage/chemically induced , Retrospective Studies , Middle Aged , Antithrombins/adverse effects , Antithrombins/therapeutic use , Antithrombins/administration & dosage , Stroke/prevention & control , Factor Xa Inhibitors/therapeutic use , Factor Xa Inhibitors/adverse effects , Aged, 80 and over , Thromboembolism/prevention & control
3.
Entropy (Basel) ; 26(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38392356

ABSTRACT

The interior problem, a persistent ill-posed challenge in CT imaging, gives rise to truncation artifacts capable of distorting CT values, thereby significantly impacting clinical diagnoses. Traditional methods have long struggled to effectively solve this issue until the advent of supervised models built on deep neural networks. However, supervised models are constrained by the need for paired data, limiting their practical application. Therefore, we propose a simple and efficient unsupervised method based on the Cycle-GAN framework. Introducing an implicit disentanglement strategy, we aim to separate truncation artifacts from content information. The separated artifact features serve as complementary constraints and the source of generating simulated paired data to enhance the training of the sub-network dedicated to removing truncation artifacts. Additionally, we incorporate polar transformation and an innovative constraint tailored specifically for truncation artifact features, further contributing to the effectiveness of our approach. Experiments conducted on multiple datasets demonstrate that our unsupervised network outperforms the traditional Cycle-GAN model significantly. When compared to state-of-the-art supervised models trained on paired datasets, our model achieves comparable visual results and closely aligns with quantitative evaluation metrics.

4.
Med Phys ; 50(5): 2759-2774, 2023 May.
Article in English | MEDLINE | ID: mdl-36718546

ABSTRACT

BACKGROUND: Many dedicated cone-beam CT (CBCT) systems have irregular scanning trajectories. Compared with the standard CBCT calibration, accurate calibration for CBCT systems with irregular trajectories is a more complex task, since the geometric parameters for each scanning view are variable. Most of the existing calibration methods assume that the intrinsic geometric relationship of the fiducials in the phantom is precisely known, and rarely delve deeper into the issue of whether the phantom accuracy is adapted to the calibration model. PURPOSE: A high-precision phantom and a highly robust calibration model are interdependent and mutually supportive, and they are both important for calibration accuracy, especially for the high-resolution CBCT. Therefore, we propose a calibration scheme that considers both accurate phantom measurement and robust geometric calibration. METHODS: Our proposed scheme consists of two parts: (1) introducing a measurement model to acquire the accurate intrinsic geometric relationship of the fiducials in the phantom; (2) developing a highly noise-robust nonconvex model-based calibration method. The measurement model in the first part is achieved by extending our previous high-precision geometric calibration model suitable for CBCT with circular trajectories. In the second part, a novel iterative method with optimization constraints based on a back-projection model is developed to solve the geometric parameters of each view. RESULTS: The simulations and real experiments show that the measurement errors of the fiducial ball bearings (BBs) are within the subpixel level. With the help of the geometric relationship of the BBs obtained by our measurement method, the classic calibration method can achieve good calibration based on far fewer BBs. All metrics obtained in simulated experiments as well as in real experiments on Micro CT systems with resolutions of 9 and 4.5 µm show that the proposed calibration method has higher calibration accuracy than the competing classic method. It is particularly worth noting that although our measurement model proves to be very accurate, the classic calibration method based on this measurement model can only achieve good calibration results when the resolution of the measurement system is close to that of the system to be calibrated, but our calibration scheme enables high-accuracy calibration even when the resolution of the system to be calibrated is twice that of the measurement system. CONCLUSIONS: The proposed combined geometrical calibration scheme does not rely on a phantom with an intricate pattern of fiducials, so it is applicable in Micro CT with high resolution. The two parts of the scheme, the "measurement model" and the "calibration model," prove to be of high accuracy. The combination of these two models can effectively improve the calibration accuracy, especially in some extreme cases.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Humans , Calibration , Image Processing, Computer-Assisted/methods , Cone-Beam Computed Tomography/methods , X-Ray Microtomography , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL