Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters








Publication year range
1.
Nat Commun ; 13(1): 2912, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614049

ABSTRACT

The primary steps of photosynthesis rely on the generation, transport, and trapping of excitons in pigment-protein complexes (PPCs). Generically, PPCs possess highly structured vibrational spectra, combining many discrete intra-pigment modes and a quasi-continuous of protein modes, with vibrational and electronic couplings of comparable strength. The intricacy of the resulting vibronic dynamics poses significant challenges in establishing a quantitative connection between spectroscopic data and underlying microscopic models. Here we show how to address this challenge using numerically exact simulation methods by considering two model systems, namely the water-soluble chlorophyll-binding protein of cauliflower and the special pair of bacterial reaction centers. We demonstrate that the inclusion of the full multi-mode vibronic dynamics in numerical calculations of linear spectra leads to systematic and quantitatively significant corrections to electronic parameter estimation. These multi-mode vibronic effects are shown to be relevant in the longstanding discussion regarding the origin of long-lived oscillations in multidimensional nonlinear spectra.


Subject(s)
Chlorophyll , Light-Harvesting Protein Complexes , Chlorophyll/chemistry , Electronics , Energy Transfer , Light-Harvesting Protein Complexes/metabolism , Proteins , Spectrum Analysis/methods
2.
Phys Rev Lett ; 123(23): 233201, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31868446

ABSTRACT

The measured multidimensional spectral response of different light harvesting complexes exhibits oscillatory features which suggest an underlying coherent energy transfer. However, making this inference rigorous is challenging due to the difficulty of isolating excited state coherences in highly congested spectra. In this work, we provide a coherent control scheme that suppresses ground state coherences, thus making rephasing spectra dominated by excited state coherences. We provide a benchmark for the scheme using a model dimeric system and numerically exact methods to analyze the spectral response. We argue that combining temporal and spectral control methods can facilitate a second generation of experiments that are tailored to extract desired information and thus significantly advance our understanding of complex open many-body structure and dynamics.

3.
Phys Rev Lett ; 123(9): 090402, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31524443

ABSTRACT

Chain-mapping techniques in combination with the time-dependent density matrix renormalization group are a powerful tool for the simulation of open-system quantum dynamics. For finite-temperature environments, however, this approach suffers from an unfavorable algorithmic scaling with increasing temperature. We prove that the system dynamics under thermal environments can be nonperturbatively described by temperature-dependent system-environmental couplings with the initial environment state being in its pure vacuum state, instead of a mixed thermal state. As a consequence, as long as the initial system state is pure, the global system-environment state remains pure at all times. The resulting speed-up and relaxed memory requirements of this approach enable the efficient simulation of open quantum systems interacting with highly structured environments in any temperature range, with applications extending from quantum thermodynamics to quantum effects in mesoscopic systems.

4.
Phys Rev Lett ; 121(6): 060401, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30141651

ABSTRACT

We present a flexible scheme to realize non-Markovian dynamics of an electronic spin qubit, using a nitrogen-vacancy center in diamond where the inherent nitrogen spin serves as a regulator of the dynamics. By changing the population of the nitrogen spin, we show that we can smoothly tune the non-Markovianity of the electron spin's dynamics. Furthermore, we examine the decoherence dynamics induced by the spin bath to exclude other sources of non-Markovianity. The amount of collected measurement data is kept at a minimum by employing Bayesian data analysis. This allows for a precise quantification of the parameters involved in the description of the dynamics and a prediction of so far unobserved data points.

5.
Phys Rev Lett ; 120(3): 030402, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29400486

ABSTRACT

We identify the conditions that guarantee equivalence of the reduced dynamics of an open quantum system (OQS) for two different types of environments-one a continuous bosonic environment leading to a unitary system-environment evolution and the other a discrete-mode bosonic environment resulting in a system-mode (nonunitary) Lindbladian evolution. Assuming initial Gaussian states for the environments, we prove that the two OQS dynamics are equivalent if both the expectation values and two-time correlation functions of the environmental interaction operators are the same at all times for the two configurations. Since the numerical and analytical description of a discrete-mode environment undergoing a Lindbladian evolution is significantly more efficient than that of a continuous bosonic environment in a unitary evolution, our result represents a powerful, nonperturbative tool to describe complex and possibly highly non-Markovian dynamics. As a special application, we recover and generalize the well-known pseudomodes approach to open-system dynamics.

6.
Phys Rev Lett ; 118(10): 100401, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28339221

ABSTRACT

In the study of open quantum systems, one of the most common ways to describe environmental effects on the reduced dynamics is through the spectral density. However, in many models this object cannot be computed from first principles and needs to be inferred on phenomenological grounds or fitted to experimental data. Consequently, some uncertainty regarding its form and parameters is unavoidable; this in turn calls into question the accuracy of any theoretical predictions based on a given spectral density. Here, we focus on the spin-boson model as a prototypical open quantum system, find two error bounds on predicted expectation values in terms of the spectral density variation considered, and state a sufficient condition for the strongest one to apply. We further demonstrate an application of our result, by bounding the error brought about by the approximations involved in the hierarchical equations of motion resolution method for spin-boson dynamics.

7.
J Chem Phys ; 143(15): 155102, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26493926

ABSTRACT

Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system's power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle's relevance in parameter regimes connected to natural light-harvesting structures.

8.
J Chem Phys ; 139(23): 235102, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24359393

ABSTRACT

We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

9.
Phys Rev Lett ; 110(5): 050403, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23414008

ABSTRACT

Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise.

10.
Philos Trans A Math Phys Eng Sci ; 370(1972): 3638-57, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-22753818

ABSTRACT

The quantum dynamics of transport networks in the presence of noisy environments has recently received renewed attention with the discovery of long-lived coherences in different photosynthetic complexes. This experimental evidence has raised two fundamental questions: firstly, what are the mechanisms supporting long-lived coherences; and, secondly, how can we assess the possible functional role that the interplay of noise and quantum coherence might play in the seemingly optimal operation of biological systems under natural conditions? Here, we review recent results, illuminate them by means of two paradigmatic systems (the Fenna-Matthew-Olson complex and the light-harvesting complex LHII) and present new progress on both questions.


Subject(s)
Energy Transfer/physiology , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/physiology , Models, Biological , Models, Chemical , Photosynthesis/physiology , Electron Transport/radiation effects , Energy Transfer/radiation effects , Light , Light-Harvesting Protein Complexes/radiation effects , Photosynthesis/radiation effects , Quantum Theory
11.
Phys Rev Lett ; 107(9): 090401, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21929214

ABSTRACT

Quantum nonlocality has been experimentally investigated by testing different forms of Bell's inequality, yet a loophole-free realization has not been achieved up to now. Much less explored are temporal Bell inequalities, which are not subject to the locality assumption, but impose a constraint on the system's time correlations. In this Letter, we report on the experimental violation of a temporal Bell's inequality using a nitrogen-vacancy (NV) defect in diamond and provide a novel quantitative test of quantum coherence. Such a test requires strong control over the system, and we present a new technique to initialize the electronic state of the NV with high fidelity, a necessary requirement also for reliable quantum information processing and/or the implementation of protocols for quantum metrology.

12.
Phys Rev Lett ; 88(19): 197901, 2002 May 13.
Article in English | MEDLINE | ID: mdl-12005665

ABSTRACT

An atom that couples to two distinct leaky optical cavities is driven by an external optical white noise field. We describe how entanglement between the light fields sustained by two optical cavities arises in such a situation. The entanglement is maximized for intermediate values of the cavity damping rates and the intensity of the white noise field, vanishing both for small and for large values of these parameters and thus exhibiting a stochastic-resonancelike behavior. This example illustrates the possibility of generating entanglement by exclusively incoherent means and sheds new light on the constructive role noise may play in certain tasks of interest for quantum information processing.

SELECTION OF CITATIONS
SEARCH DETAIL