Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Diabetologia ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222156

ABSTRACT

AIMS/HYPOTHESIS: Dietary patterns characterised by high intakes of vegetables may lower the risk of pre-eclampsia and premature birth in the general population. The effect of dietary patterns in women with type 1 diabetes, who have an increased risk of complications in pregnancy, is not known. The aim of this study was to investigate the relationship between dietary patterns and physical activity during pregnancy and maternal complications and birth outcomes in women with type 1 diabetes. We also compared dietary patterns in women with and without type 1 diabetes. METHODS: Diet was assessed in the third trimester using a validated food frequency questionnaire in participants followed prospectively in the multi-centre Environmental Determinants of Islet Autoimmunity (ENDIA) study. Dietary patterns were characterised by principal component analysis. The Pregnancy Physical Activity Questionnaire was completed in each trimester. Data for maternal and birth outcomes were collected prospectively. RESULTS: Questionnaires were completed by 973 participants during 1124 pregnancies. Women with type 1 diabetes (n=615 pregnancies with dietary data) were more likely to have a 'fresh food' dietary pattern than women without type 1 diabetes (OR 1.19, 95% CI 1.07, 1.31; p=0.001). In women with type 1 diabetes, an increase equivalent to a change from quartile 1 to 3 in 'fresh food' dietary pattern score was associated with a lower risk of pre-eclampsia (OR 0.37, 95% CI 0.17, 0.78; p=0.01) and premature birth (OR 0.35, 95% CI 0.20, 0.62, p<0.001). These associations were mediated in part by BMI and HbA1c. The 'processed food' dietary pattern was associated with an increased birthweight (ß coefficient 56.8 g, 95% CI 2.8, 110.8; p=0.04). Physical activity did not relate to outcomes. CONCLUSIONS/INTERPRETATION: A dietary pattern higher in fresh foods during pregnancy was associated with sizeable reductions in risk of pre-eclampsia and premature birth in women with type 1 diabetes.

2.
Diabetes Care ; 47(10): 1750-1756, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39159241

ABSTRACT

OBJECTIVE: Continuous glucose monitoring (CGM) can detect early dysglycemia in older children and adults with presymptomatic type 1 diabetes (T1D) and predict risk of progression to clinical onset. However, CGM data for very young children at greatest risk of disease progression are lacking. This study aimed to investigate the use of CGM data measured in children being longitudinally observed in the Australian Environmental Determinants of Islet Autoimmunity (ENDIA) study from birth to age 10 years. RESEARCH DESIGN AND METHODS: Between January 2021 and June 2023, 31 ENDIA children with persistent multiple islet autoimmunity (PM Ab+) and 24 age-matched control children underwent CGM assessment alongside standard clinical monitoring. The CGM metrics of glucose SD (SDSGL), coefficient of variation (CEV), mean sensor glucose (SGL), and percentage of time >7.8 mmol/L (>140 mg/dL) were determined and examined for between-group differences. RESULTS: The mean (SD) ages of PM Ab+ and Ab- children were 4.4 (1.8) and 4.7 (1.9) years, respectively. Eighty-six percent of eligible PM Ab+ children consented to CGM wear, achieving a median (quartile 1 [Q1], Q3) sensor wear period of 12.5 (9.0, 15.0) days. PM Ab+ children had higher median (Q1, Q3) SDSGL (1.1 [0.9, 1.3] vs. 0.9 [0.8, 1.0] mmol/L; P < 0.001) and CEV (17.3% [16.0, 20.9] vs. 14.7% [12.9, 16.6]; P < 0.001). Percentage of time >7.8 mmol/L was greater in PM Ab+ children (median [Q1, Q3] 8.0% [4.4, 13.0] compared with 3.3% [1.4, 5.3] in Ab- children; P = 0.005). Mean SGL did not differ significantly between groups (P = 0.10). CONCLUSIONS: CGM is feasible and well tolerated in very young children at risk of T1D. Very young PM Ab+ children have increased SDSGL, CEV, and percentage of time >7.8 mmol/L, consistent with prior studies involving older participants.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/diagnosis , Child, Preschool , Female , Male , Child , Blood Glucose/analysis , Infant , Infant, Newborn , Continuous Glucose Monitoring
3.
Acta Biomater ; 186: 260-274, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39089351

ABSTRACT

Scaffolds for bone defect treatment should ideally support vascularization and promote bone formation, to facilitate the translation into biomedical device applications. This study presents a novel approach utilizing 3D-printed water-dissolvable polyvinyl alcohol (PVA) sacrificial molds to engineer polymerized High Internal Phase Emulsion (polyHIPE) scaffolds with microchannels and distinct multiscale porosity. Two sacrificial mold variants (250 µm and 500 µm) were generated using fused deposition modeling, filled with HIPE, and subsequently dissolved to create polyHIPE scaffolds containing microchannels. In vitro assessments demonstrated significant enhancement in cell infiltration, proliferation, and osteogenic differentiation, underscoring the favorable impact of microchannels on cell behavior. High loading efficiency and controlled release of the osteogenic factor BMP-2 were achieved, with microchannels facilitating release of the growth factor. Evaluation in a mouse critical-size calvarial defect model revealed enhanced vascularization and bone formation in microchanneled scaffolds containing BMP-2. This study not only introduces an accessible method for creating multiscale porosity in polyHIPE scaffolds but also emphasizes its capability to enhance cellular infiltration, controlled growth factor release, and in vivo performance. The findings suggest promising applications in bone tissue engineering and regenerative medicine, and are expected to facilitate the translation of this type of biomaterial scaffold. STATEMENT OF SIGNIFICANCE: This study holds significance in the realm of biomaterial scaffold design for bone tissue engineering and regeneration. We demonstrate a novel method to introduce controlled multiscale porosity and microchannels into polyHIPE scaffolds, by utilizing 3D-printed water-dissolvable PVA molds. The strategy offers new possibilities for improving cellular infiltration, achieving controlled release of growth factors, and enhancing vascularization and bone formation outcomes. This microchannel approach not only marks a substantial stride in scaffold design but also demonstrates its tangible impact on enhancing osteogenic cell differentiation and fostering robust bone formation in vivo. The findings emphasize the potential of this methodology for bone regeneration applications, showcasing an interesting advancement in the quest for effective and innovative biomaterial scaffolds to regenerate bone defects.


Subject(s)
Bone Morphogenetic Protein 2 , Neovascularization, Physiologic , Osteogenesis , Printing, Three-Dimensional , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Osteogenesis/drug effects , Bone Morphogenetic Protein 2/pharmacology , Neovascularization, Physiologic/drug effects , Mice , Humans , Polyvinyl Alcohol/chemistry , Porosity , Polymers/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Styrenes
4.
Diabet Med ; : e15419, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129150

ABSTRACT

AIM: One third of Australian children diagnosed with type 1 diabetes present with life-threatening diabetic ketoacidosis (DKA) at diagnosis. Screening for early-stage, presymptomatic type 1 diabetes, with ongoing follow-up, can substantially reduce this risk (<5% risk). Several screening models are being trialled internationally, without consensus on the optimal approach. This pilot study aims to assess three models for a routine, population-wide screening programme in Australia. METHODS: An implementation science-guided pilot study to evaluate the feasibility, acceptability and costs of three screening models in children will be conducted between July 2022 and June 2024. These models are as follows: (1) Genetic risk-stratified screening using newborn heel prick dried bloodspots, followed by autoantibody testing from 11 months of age; (2) genetic risk-stratified screening of infant (6-12 months) saliva followed by autoantibody testing from 10 months of age; and (3) autoantibody screening using capillary dried bloodspots collected from children aged 2, 6 or 10 years. Cohorts for each model will be recruited from targeted geographic areas across Australia involving ≥2 states per cohort, with a recruitment target of up to 3000 children per cohort (total up to 9000 children). The primary outcome is screening uptake for each cohort. Secondary outcomes include programme feasibility, costs, parental anxiety, risk perception, satisfaction, well-being and quality of life, and health professional attitudes and satisfaction. CONCLUSIONS: This pilot is the first direct comparison of three screening implementation models for general population screening. Findings will provide evidence to inform a potential national screening programme for Australian children. TRIAL REGISTRATION: ACTRN12622000381785.

5.
Br J Haematol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087522

ABSTRACT

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by complex molecular and cytogenetic abnormalities. Pro-oxidant cellular redox status is a common hallmark of AML cells, providing a rationale for redox-based anticancer strategy. We previously discovered that auranofin (AUF), initially used for the treatment of rheumatoid arthritis and repositioned for its anticancer activity, can synergize with a pharmacological concentration of vitamin C (VC) against breast cancer cell line models. In this study, we observed that this drug combination synergistically and efficiently killed cells of leukaemic cell lines established from different myeloid subtypes. In addition to an induced elevation of reactive oxygen species and ATP depletion, a rapid dephosphorylation of 4E-BP1 and p70S6K, together with a strong inhibition of protein synthesis were early events in response to AUF/VC treatment, suggesting their implication in AUF/VC-induced cytotoxicity. Importantly, a study on 22 primary AML specimens from various AML subtypes showed that AUF/VC combinations at pharmacologically achievable concentrations were effective to eradicate primary leukaemic CD34+ cells from the majority of these samples, while being less toxic to normal cord blood CD34+ cells. Our findings indicate that targeting the redox vulnerability of AML with AUF/VC combinations could present a potential anti-AML therapeutic approach.

6.
BMJ Open Diabetes Res Care ; 12(4)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013632

ABSTRACT

INTRODUCTION: The Environmental Determinants of Islet Autoimmunity (ENDIA) Study is an ongoing Australian prospective cohort study investigating how modifiable prenatal and early-life exposures drive the development of islet autoimmunity and type 1 diabetes (T1D) in children. In this profile, we describe the cohort's parental demographics, maternal and neonatal outcomes and human leukocyte antigen (HLA) genotypes. RESEARCH DESIGN AND METHODS: Inclusion criteria were an unborn child, or infant aged less than 6 months, with a first-degree relative (FDR) with T1D. The primary outcome was persistent islet autoimmunity, with children followed until a T1D diagnosis or 10 years of age. Demographic data were collected at enrollment. Lifestyle, clinical and anthropometric data were collected at each visit during pregnancy and clinical pregnancy and birth data were verified against medical case notes. Data were compared between mothers with and without T1D. HLA genotyping was performed on the ENDIA child and all available FDRs. RESULTS: The final cohort comprised 1473 infants born to 1214 gestational mothers across 1453 pregnancies, with 80% enrolled during pregnancy. The distribution of familial T1D probands was 62% maternal, 28% paternal and 11% sibling. The frequency of high-risk HLA genotypes was highest in T1D probands, followed by ENDIA infants, and lowest among unaffected family members. Mothers with T1D had higher rates of pregnancy complications and perinatal intervention, and larger babies of shorter gestation. Parent demographics were comparable to the Australian population for age, parity and obesity. A greater percentage of ENDIA parents were Australian born, lived in a major city and had higher socioeconomic advantage and education. CONCLUSIONS: This comprehensive profile provides the context for understanding ENDIA's scope, methodology, unique strengths and limitations. Now fully recruited, ENDIA will provide unique insights into the roles of early-life factors in the development of islet autoimmunity and T1D in the Australian environment. TRIAL REGISTRATION NUMBER: ACTRN12613000794707.


Subject(s)
Autoimmunity , Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/etiology , Female , Pregnancy , Australia/epidemiology , Prospective Studies , Male , Child , Infant , Infant, Newborn , Risk Factors , Adult , Islets of Langerhans/immunology , Longitudinal Studies , Follow-Up Studies , Prenatal Exposure Delayed Effects/epidemiology , Child, Preschool , Parents , Genotype , HLA Antigens/genetics
7.
Commun Biol ; 7(1): 793, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951146

ABSTRACT

Brown and brown-like adipose tissues have attracted significant attention for their role in metabolism and therapeutic potential in diabetes and obesity. Despite compelling evidence of an interplay between adipocytes and lymphocytes, the involvement of these tissues in immune responses remains largely unexplored. This study explicates a newfound connection between neuroinflammation and brown- and bone marrow adipose tissue. Leveraging the use of [18F]F-AraG, a mitochondrial metabolic tracer capable of tracking activated lymphocytes and adipocytes simultaneously, we demonstrate, in models of glioblastoma and multiple sclerosis, the correlation between intracerebral immune infiltration and changes in brown- and bone marrow adipose tissue. Significantly, we show initial evidence that a neuroinflammation-adipose tissue link may also exist in humans. This study proposes the concept of an intricate immuno-neuro-adipose circuit, and highlights brown- and bone marrow adipose tissue as an intermediary in the communication between the immune and nervous systems. Understanding the interconnectedness within this circuitry may lead to advancements in the treatment and management of various conditions, including cancer, neurodegenerative diseases and metabolic disorders.


Subject(s)
Adipose Tissue, Brown , Neuroinflammatory Diseases , Animals , Humans , Adipose Tissue, Brown/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Bone Marrow/metabolism , Mice , Male , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/metabolism , Mice, Inbred C57BL , Female , Multiple Sclerosis/pathology , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/diagnostic imaging , Positron-Emission Tomography
8.
Mol Imaging Biol ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060882

ABSTRACT

PURPOSE: Myocardial infarction (MI) with subsequent inflammation is one of the most common heart conditions leading to progressive tissue damage. A reliable imaging marker to assess tissue viability after MI would help determine the risks and benefits of any intervention. In this study, we investigate whether a new mitochondria-targeted imaging agent, 18F-labeled 2'-deoxy-2'-18F-fluoro-9-ß-d-arabinofuranosylguanine ([18F]F-AraG), a positron emission tomography (PET) agent developed for imaging activated T cells, is suitable for cardiac imaging and to test the myocardial viability after MI. PROCEDURE: To test whether the myocardial [18F]-F-AraG signal is coming from cardiomyocytes or immune infiltrates, we compared cardiac signal in wild-type (WT) mice with that of T cell deficient Rag1 knockout (Rag1 KO) mice. We assessed the effect of dietary nucleotides on myocardial [18F]F-AraG uptake in normal heart by comparing [18F]F-AraG signals between mice fed with purified diet and those fed with purified diet supplemented with nucleotides. The myocardial viability was investigated in rodent model by imaging rat with [18F]F-AraG and 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) before and after MI. All PET signals were quantified in terms of the percent injected dose per cc (%ID/cc). We also explored [18F]FDG signal variability and potential T cell infiltration into fibrotic area in the affected myocardium with H&E analysis. RESULTS: The difference in %ID/cc for Rag1 KO and WT mice was not significant (p = ns) indicating that the [18F]F-AraG signal in the myocardium was primarily coming from cardiomyocytes. No difference in myocardial uptake was observed between [18F]F-AraG signals in mice fed with purified diet and with purified diet supplemented with nucleotides (p = ns). The [18F]FDG signals showed wider variability at different time points. Noticeable [18F]F-AraG signals were observed in the affected MI regions. There were T cells in the fibrotic area in the H&E analysis, but they did not constitute the predominant infiltrates. CONCLUSIONS: Our preliminary preclinical data show that [18F]F-AraG accumulates in cardiomyocytes indicating that it may be suitable for cardiac imaging and to evaluate the myocardial viability after MI.

9.
Nat Cancer ; 5(7): 1082-1101, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38816660

ABSTRACT

Dose-limiting toxicity poses a major limitation to the clinical utility of targeted cancer therapies, often arising from target engagement in nonmalignant tissues. This obstacle can be minimized by targeting cancer dependencies driven by proteins with tissue-restricted and/or tumor-restricted expression. In line with another recent report, we show here that, in acute myeloid leukemia (AML), suppression of the myeloid-restricted PIK3CG/p110γ-PIK3R5/p101 axis inhibits protein kinase B/Akt signaling and compromises AML cell fitness. Furthermore, silencing the genes encoding PIK3CG/p110γ or PIK3R5/p101 sensitizes AML cells to established AML therapies. Importantly, we find that existing small-molecule inhibitors against PIK3CG are insufficient to achieve a sustained long-term antileukemic effect. To address this concern, we developed a proteolysis-targeting chimera (PROTAC) heterobifunctional molecule that specifically degrades PIK3CG and potently suppresses AML progression alone and in combination with venetoclax in human AML cell lines, primary samples from patients with AML and syngeneic mouse models.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-akt , Signal Transduction , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , Humans , Animals , Mice , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Class Ib Phosphatidylinositol 3-Kinase/genetics , Cell Line, Tumor , Xenograft Model Antitumor Assays , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Proteolysis/drug effects , Female , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
11.
Res Sq ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746162

ABSTRACT

Purpose: Myocardial infarction (MI) with subsequent inflammation is one of the most common heart conditions leading to progressive tissue damage. A reliable imaging marker to assess tissue viability after MI would help determine the risks and benefits of any intervention. In this study, we investigate whether a new mitochondria-targeted imaging agent, 18F-labeled 2'-deoxy-2'-18F-fluoro-9-ß-d-arabinofuranosylguanine ([18F]F-AraG), a positron emission tomography (PET) agent developed for imaging activated T cells, is suitable for cardiac imaging and to test the myocardial viability after MI. Procedure: To test whether the myocardial [18F]-F-AraG signal is coming from cardiomyocytes or immune infiltrates, we compared cardiac signal in wild-type (WT) mice with that of T cell deficient Rag1 knockout (Rag1 KO) mice. We assessed the effect of dietary nucleotides on myocardial [18F]F-AraG uptake in normal heart by comparing [18F]F-AraG signals between mice fed with purified diet and those fed with purified diet supplemented with nucleotides. The myocardial viability was investigated in rodent model by imaging rat with [18F]F-AraG and 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) before and after MI. All PET signals were quantified in terms of the percent injected dose per cc (%ID/cc). We also explored [18F]FDG signal variability and potential T cell infiltration into fibrotic area in the affected myocardium with H&E analysis. Results: The difference in %ID/cc for Rag1 KO and WT mice was not significant (p = ns) indicating that the [18F]F-AraG signal in the myocardium was primarily coming from cardiomyocytes. No difference in myocardial uptake was observed between [18F]F-AraG signals in mice fed with purified diet and with purified diet supplemented with nucleotides (p = ns). The [18F]FDG signals showed wider variability at different time points. Noticeable [18F]F-AraG signals were observed in the affected MI regions. There were T cells in the fibrotic area in the H&E analysis, but they did not constitute the predominant infiltrates. Conclusions: Our preliminary preclinical data show that [18F]F-AraG accumulates in cardiomyocytes indicating that it may be suitable for cardiac imaging and to evaluate the myocardial viability after MI.

12.
Nat Commun ; 15(1): 4528, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811532

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is the most prevalent cause of liver disease worldwide, with a single approved therapeutic. Previous research has shown that interleukin-22 (IL-22) can suppress ß-cell stress, reduce local islet inflammation, restore appropriate insulin production, reverse hyperglycemia, and ameliorate insulin resistance in preclinical models of diabetes. In clinical trials long-acting forms of IL-22 have led to increased proliferation in the skin and intestine, where the IL-22RA1 receptor is highly expressed. To maximise beneficial effects whilst reducing the risk of epithelial proliferation and cancer, we designed short-acting IL-22-bispecific biologic drugs that successfully targeted the liver and pancreas. Here we show 10-fold lower doses of these bispecific biologics exceed the beneficial effects of native IL-22 in multiple preclinical models of MASH, without off-target effects. Treatment restores glycemic control, markedly reduces hepatic steatosis, inflammation, and fibrogenesis. These short-acting IL-22-bispecific targeted biologics are a promising new therapeutic approach for MASH.


Subject(s)
Fatty Liver , Interleukin-22 , Interleukins , Liver , Pancreas , Interleukins/metabolism , Animals , Liver/metabolism , Liver/pathology , Liver/drug effects , Pancreas/pathology , Pancreas/metabolism , Pancreas/drug effects , Humans , Mice , Fatty Liver/drug therapy , Fatty Liver/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Insulin Resistance , Receptors, Interleukin/metabolism
15.
Article in English | MEDLINE | ID: mdl-38332670

ABSTRACT

CONTEXT: Patients with Turner Syndrome often present with short stature and ovarian insufficiency. The optimal method of pubertal induction to maximize adult height (AH) is unknown. OBJECTIVE: To identify variables related to pubertal induction that are associated with growth and AH. DESIGN & SETTING: Retrospective cohort analysis of patients attending a specialized Turner Syndrome clinic at a quaternary children's hospital. PATIENTS: Patients with Turner Syndrome (n=107) who attended the clinic between 2015 and 2021. Of these, 51 received estradiol for pubertal induction. MAIN OUTCOME MEASURES: Change in height standard deviation score (ΔHeightSDS) during pubertal induction, and AH. METHODS: Age at pubertal induction, bone age delay, midparental height (MPH), growth hormone treatment, and karyotype were assessed as predictors of AH and ΔHeightSDS. Associations between karyotype and comorbidities were also assessed. RESULTS: AH was predicted by MPH (0.8cm/cm, P=0.0001) and bone age delay (-1.84 cm/year, P= 0.006). ΔHeightSDS was predicted by growth hormone dose (0.09 SDS/mg/m2/week; P=0.017), bone age delay (-1.37 SDS/year; P=0.003), and age at pubertal induction (0.44 SDS/year; P=0.001). There was an interaction between bone age delay and pubertal induction age (P=0.013), with the combination of younger age at pubertal induction and a less-delayed bone age associated with a lower ΔHeightSDS. Karyotype did not influence AH or ΔHeightSDS, but did affect rates of other comorbidities. CONCLUSIONS: Decisions around timing of pubertal induction in patients with Turner Syndrome should be tailored to the individual. The current approach to estrogen supplementation needs to be refined in order to facilitate pubertal induction in a physiological manner without compromising height.

16.
Article in English | MEDLINE | ID: mdl-38164825

ABSTRACT

The elucidation of the underlying cause of polyuria-polydipsia syndrome (PPS) is a challenging-especially in the differentiation of partial defects of arginine vasopressin (AVP) secretion or action from primary polydipsia. The water deprivation test has been utilized for many decades, and its application in the paediatric population has been applied using parameters predominantly established in adult cohorts. In more recent times, the development of automated commercial assays for copeptin, a surrogate marker for AVP, has represented a significant advancement in the diagnostic approach to PPS. Measurement of copeptin concentrations has major advantages and has essentially superseded measurement of AVP in diagnostic protocols for PPS. Additionally, stimulated-copeptin protocols utilizing hypertonic saline infusion, arginine, and glucagon have been investigated, and are promising. However, further studies are required in the population-incorporating the differences in physiological regulation of water homeostasis, and safety requirements-before there is widespread adoption into clinical practice.

17.
Proc Natl Acad Sci U S A ; 121(4): e2317054121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38227671

ABSTRACT

Kelp forests are highly productive and economically important ecosystems worldwide, especially in the North Pacific Ocean. However, current hypotheses for their evolutionary origins are reliant on a scant fossil record. Here, we report fossil hapteral kelp holdfasts from western Washington State, USA, indicating that kelp has existed in the northeastern Pacific Ocean since the earliest Oligocene. This is consistent with the proposed North Pacific origin of kelp associated with global cooling around the Eocene-Oligocene transition. These fossils also support the hypotheses that a hapteral holdfast, rather than a discoid holdfast, is the ancestral state in complex kelps and suggest that early kelps likely had a flexible rather than a stiff stipe. Early kelps were possibly grazed upon by mammals like desmostylians, but fossil evidence of the complex ecological interactions known from extant kelp forests is lacking. The fossil record further indicates that the present-day, multi-story kelp forest had developed at latest after the mid-Miocene climate optimum. In summary, the fossils signify a stepwise evolution of the kelp ecosystem in the North Pacific, likely enabled by changes in the ocean-climate system.


Subject(s)
Ecosystem , Kelp , Animals , Forests , Climate , Pacific Ocean , Mammals
18.
J Pharmacol Exp Ther ; 388(2): 333-346, 2024 01 17.
Article in English | MEDLINE | ID: mdl-37770203

ABSTRACT

Synthesis of the acetylcholinesterase inhibitor paraoxon (POX) as a carbon-11 positron emission tomography tracer ([11C]POX) and profiling in live rats is reported. Naïve rats intravenously injected with [11C]POX showed a rapid decrease in parent tracer to ∼1%, with an increase in radiolabeled serum proteins to 87% and red blood cells (RBCs) to 9%. Protein and RBC leveled over 60 minutes, reflecting covalent modification of proteins by [11C]POX. Ex vivo biodistribution and imaging profiles in naïve rats had the highest radioactivity levels in lung followed by heart and kidney, and brain and liver the lowest. Brain radioactivity levels were low but observed immediately after injection and persisted over the 60-minute experiment. This showed for the first time that even low POX exposures (∼200 ng tracer) can rapidly enter brain. Rats given an LD50 dose of nonradioactive paraoxon at the LD50 20 or 60 minutes prior to [11C]POX tracer revealed that protein pools were blocked. Blood radioactivity at 20 minutes was markedly lower than naïve levels due to rapid protein modification by nonradioactive POX; however, by 60 minutes the blood radioactivity returned to near naïve levels. Live rat tissue imaging-derived radioactivity values were 10%-37% of naïve levels in nonradioactive POX pretreated rats at 20 minutes, but by 60 minutes the area under the curve (AUC) values had recovered to 25%-80% of naïve. The live rat imaging supported blockade by nonradioactive POX pretreatment at 20 minutes and recovery of proteins by 60 minutes. SIGNIFICANCE STATEMENT: Paraoxon (POX) is an organophosphorus (OP) compound and a powerful prototype and substitute for OP chemical warfare agents (CWAs) such as sarin, VX, etc. To study the distribution and penetration of POX into the central nervous system (CNS) and other tissues, a positron emission tomography (PET) tracer analog, carbon-11-labeled paraoxon ([11C]POX), was prepared. Blood and tissue radioactivity levels in live rats demonstrated immediate penetration into the CNS and persistent radioactivity levels in tissues indicative of covalent target modification.


Subject(s)
Acetylcholinesterase , Carbon Radioisotopes , Paraoxon , Rats , Animals , Tissue Distribution , Positron-Emission Tomography , Organophosphorus Compounds
20.
Clin Chem Lab Med ; 62(1): 41-49, 2024 01 26.
Article in English | MEDLINE | ID: mdl-37349976

ABSTRACT

Type 1 diabetes (T1D) is well-recognised as a continuum heralded by the development of islet autoantibodies, progression to islet autoimmunity causing beta cell destruction, culminating in insulin deficiency and clinical disease. Abnormalities of glucose homeostasis are known to exist well before the onset of typical symptoms. Laboratory-based tests such as the oral glucose tolerance test (OGTT) and glycated haemoglobin (HbA1c) have been used to stage T1D and assess the risk of progression to clinical T1D. Continuous glucose monitoring (CGM) can detect early glycaemic abnormalities and can therefore be used to monitor for metabolic deterioration in pre-symptomatic, islet autoantibody positive, at-risk individuals. Early identification of these children can not only reduce the risk of presentation with diabetic ketoacidosis (DKA), but also determine eligibility for prevention trials, which aim to prevent or delay progression to clinical T1D. Here, we describe the current state with regard to the use of the OGTT, HbA1c, fructosamine and glycated albumin in pre-symptomatic T1D. Using illustrative cases, we present our clinical experience with the use of CGM, and advocate for an increased role of this diabetes technology, for monitoring metabolic deterioration and disease progression in children with pre-symptomatic T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Child , Humans , Diabetes Mellitus, Type 1/diagnosis , Blood Glucose , Blood Glucose Self-Monitoring , Glucose Tolerance Test , Glycated Hemoglobin , Autoantibodies
SELECTION OF CITATIONS
SEARCH DETAIL