Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Opt Express ; 30(24): 43491-43502, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36523045

ABSTRACT

A counter-propagating laser-beam platform using a spherical plasma mirror was developed for the kilojoule-class petawatt LFEX laser. The temporal and spatial overlaps of the incoming and redirected beams were measured with an optical interferometer and an x-ray pinhole camera. The plasma mirror performance was evaluated by measuring fast electrons, ions, and neutrons generated in the counter-propagating laser interaction with a Cu-doped deuterated film on both sides. The reflectivity and peak intensity were estimated as ∼50% and ∼5 × 1018 W/cm2, respectively. The platform could enable studies of counter-streaming charged particles in high-energy-density plasmas for fundamental and inertial confinement fusion research.

2.
J Org Chem ; 67(7): 2223-7, 2002 Apr 05.
Article in English | MEDLINE | ID: mdl-11925232

ABSTRACT

Spirobenzopyrans bearing monoazathiacrown ethers and noncyclic analogues were synthesized, and their ion-responsive photochromism depending on the dual metal ion interaction with the crown ether and the phenolate anion moieties was examined using alkali and alkaline-earth metal ions, Ag(+), Tl(+), Pb(2+), Hg(2+), and Zn(2+). The prepared spirobenzopyrans showed a selective binding ability to Mg(2+) and Ag(+) with negative and positive photochromism, respectively. Among the metal ions, only Ag(+) facilitated photoisomerization to the corresponding merocyanine form. Depending on the ring size of the monoazathiacrown ether moieties, soft metal ions such as Hg(2+) and Ag(+) showed significant shifts in the UV-vis absorption spectra, while hard metal ions such as Mg(2+), Zn(2+), and Pb(2+) did not afford any meaningful shift. This result reflects that the monoazathiacrown ether and phenolate anion moieties prefer soft and hard metal ions, respectively. Therefore, the Mg(2+) and Ag(+) selectivities are mainly derived from the phenolate anion and monoazathiacrown ether moieties, respectively. On the other hand, a spirobenzothiapyran bearing 3,9-dithia-6-monoazaundecane showed a remarkable selectivity to Ag(+).

SELECTION OF CITATIONS
SEARCH DETAIL