Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Int J Pharm ; 662: 124480, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39038719

ABSTRACT

Adenovirus (Ad) vectors based on human adenovirus serotype 5 (Ad5) have attracted significant attention as vaccine vectors for infectious diseases. However, the effectiveness of Ad5 vectors as vaccines is often inhibited by the anti-Ad5 neutralizing antibodies retained by many adults. To overcome this drawback, we focused on human adenovirus serotype 35 (Ad35) vectors with low seroprevalence in adults. Although Ad35 vectors can circumvent anti-Ad5 neutralizing antibodies, vector yields of Ad35 vectors are often inferior to those of Ad5 vectors. In this study, we developed novel Ad35 vectors containing the Ad5 E4 orf 4, 6, and 6/7 or the Ad5 E4 orf 6 and 6/7 for efficient vector production, and compared their properties. These E4-modified Ad35 vectors efficiently propagated to a similar extent at virus titers comparable to those of Ad5 vectors. An Ad35 vector containing the Ad5 E4 orf 4, 6, and 6/7 mediated more efficient transduction than that containing the Ad5 E4 orf 6 and 6/7 in human cultured cells. Furthermore, insertion of an arginine-glycine-aspartate (RGD) peptide in the fiber region of an Ad35 vector containing the Ad5 E4 orf 4, 6, and 6/7 significantly improved the transgene product-specific antibody production following intramuscular administration in mice. The Ad35 vector containing the RGD peptide mediated efficient vaccine effects even in the mice pre-immunized with an Ad5.


Subject(s)
Adenoviruses, Human , Genetic Vectors , Oligopeptides , Animals , Humans , Oligopeptides/chemistry , Adenoviruses, Human/genetics , Adenoviruses, Human/immunology , Female , Mice , Serogroup , Mice, Inbred BALB C , Adenovirus Vaccines/immunology , Adenovirus Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , HEK293 Cells , Adenovirus E4 Proteins/immunology , Adenovirus E4 Proteins/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood
2.
PLoS One ; 18(10): e0286323, 2023.
Article in English | MEDLINE | ID: mdl-37856461

ABSTRACT

Circulating tumor cells (CTCs) are present in the blood of cancer patients from the early stage of cancer development, and their presence has been correlated with patient prognosis and treatment responses. Accordingly, CTCs have been attracting attention as a novel biomarker for early detection of cancer and monitoring of treatment responses. However, since patients typically have only a few CTCs per milliliter of blood, development of an accurate and highly sensitive CTC detection method is crucial. We previously developed a CTC detection method using a novel conditionally replicating adenovirus (Ad) that expresses green fluorescence protein (GFP) in a tumor cell-specific manner by expressing the E1 gene using a tumor-specific human telomerase reverse transcriptase (hTERT) promoter (rAdF35-142T-GFP). CTCs were efficiently detected using rAdF35-142T-GFP, but GFP expression levels in the CTCs and production efficiencies of rAdF35-142T-GFP were relatively low. In this study, in order to overcome these problems, we developed four types of novel GFP-expressing conditionally replicating Ads and examined their ability to visualize CTCs in the blood samples of lung cancer patients. Among the four types of novel recombinant Ads, the novel conditionally replicating Ad containing the 2A peptide and the GFP gene downstream of the E1A gene and the adenovirus death protein (ADP) gene in the E3 region (rAdF35-E1-2A-GFP-ADP) mediated the highest number of GFP-positive cells in the human cultured tumor cell lines. Titers of rAdF35-E1-2A-GFP-ADP were significantly higher (about 4-fold) than those of rAdF35-142T-GFP. rAdF35-E1-2A-GFP-ADP and rAdF35-142T-GFP efficiently detected CTCs in the blood of lung cancer patients at similar levels. GFP+/CD45- cells (CTCs) were found in 10 of 17 patients (58.8%) for both types of recombinant Ads.


Subject(s)
Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Adenoviridae/physiology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Tumor Cells, Cultured , Cell Line, Tumor
3.
Cell Death Dis ; 11(7): 570, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32703933

ABSTRACT

Virotherapy using oncolytic adenovirus is an effective anticancer strategy. However, the tumor selectivity of oncolytic adenoviruses is not enough high. To develop oncolytic adenovirus with a low risk of off-tumor toxicity, we constructed a photoactivatable oncolytic adenovirus (paOAd). In response to blue light irradiation, the expression of adenoviral E1 genes, which are necessary for adenoviral replication, is induced and replication of this adenovirus occurs. In vitro, efficient lysis of various human cancer cell lines was observed by paOAd infection followed by blue light irradiation. Importantly, there was no off-tumor toxicity unless the cells were irradiated by blue light. In vivo, tumor growth in a subcutaneous tumor model and a mouse model of liver cancer was significantly inhibited by paOAd infection followed by blue light irradiation. In addition, paOAd also showed a therapeutic effect on cancer stem cells. These results suggest that paOAd is useful as a safe and therapeutically effective cancer therapy.


Subject(s)
Adenoviridae/physiology , Neoplasms/therapy , Oncolytic Virotherapy , Oncolytic Viruses/physiology , Optogenetics , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Mice, Inbred BALB C , Mice, Nude , Neoplastic Stem Cells/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL