Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters








Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(32): 20551-6, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26198203

ABSTRACT

The tuning of charge carrier density of graphene is an essential factor to achieve the integration of high-efficiency electronic and optoelectronic devices. We demonstrate the reversible doping in graphene using deep ultraviolet (UV) irradiation and treatment with O2 and N2 gases. The Dirac point shift towards a positive gate voltage of chemical vapor deposition grown graphene field-effect transistors confirms the p-type doping, which is observed under UV irradiation and treatment with O2 gas, while it restores its pristine state after treatment with N2 gas under UV irradiation. The emergence of an additional peak in the X-ray photoelectron spectra during UV irradiation and treatment with O2 gas represents the oxidation of graphene, and the elimination of this peak during UV irradiation and treatment with N2 gas reveals the restoration of graphene in its pristine state. The shift in the G and 2D bands in Raman spectra towards higher and then lower wavenumber also suggests p-type doping and then reversible doping in graphene. The controlled doping and its reversibility in large area grown graphene offer a new vision for electronic applications.

2.
ACS Appl Mater Interfaces ; 6(23): 21645-51, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25409490

ABSTRACT

Molybdenum disulfide (MoS2), which is one of the representative transition metal dichalcogenides, can be made as an atomically thin layer while preserving its semiconducting characteristics. We fabricated single-, bi-, and multilayer MoS2 field-effect transistor (FET) by the mechanical exfoliation method and studied the effect of deep ultraviolet (DUV) light illumination. The thickness of the MoS2 layers was determined using an optical microscope and further confirmed by Raman spectroscopy and atomic force microscopy. The MoS2 FETs with different number of layers were assessed for DUV-sensitive performances in various environments. The photocurrent response to DUV light becomes larger with increasing numbers of MoS2 layers and is significantly enhanced in N2 gas environment compared with that in atmospheric environment.

9.
J Phys Condens Matter ; 24(33): 335301, 2012 Aug 22.
Article in English | MEDLINE | ID: mdl-22814217

ABSTRACT

The properties of single-layer graphene are strongly affected by metal adsorbates and clusters on graphene. Here, we study the effect of a thin layer of chromium (Cr) and titanium (Ti) metals on chemical vapor deposition (CVD)-grown graphene by using Raman spectroscopy and transport measurements. The Raman spectra and transport measurements show that both Cr and Ti metals affect the structure as well as the electronic properties of the CVD-grown graphene. The shift of peak frequencies, intensities and widths of the Raman bands are analyzed after the deposition of metal films of different thickness on CVD-grown graphene. The shifts in G and 2D peak positions indicate the doping effect of graphene by Cr and Ti metals. While p-type doping was observed for Cr-coated graphene, n-type doping was observed for Ti-coated graphene. The doping effect is also confirmed by measuring the gate voltage dependent resistivity of graphene. We have also found that annealing in Ar atmosphere induces a p-type doping effect on Cr- or Ti-coated CVD-grown graphene.

SELECTION OF CITATIONS
SEARCH DETAIL