Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Immunity ; 57(10): 2328-2343.e8, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39217987

ABSTRACT

The precise neurophysiological changes prompted by meningeal lymphatic dysfunction remain unclear. Here, we showed that inducing meningeal lymphatic vessel ablation in adult mice led to gene expression changes in glial cells, followed by reductions in mature oligodendrocyte numbers and specific lipid species in the brain. These phenomena were accompanied by altered meningeal adaptive immunity and brain myeloid cell activation. During brain remyelination, meningeal lymphatic dysfunction provoked a state of immunosuppression that contributed to delayed spontaneous oligodendrocyte replenishment and axonal loss. The deficiencies in mature oligodendrocytes and neuroinflammation due to impaired meningeal lymphatic function were solely recapitulated in immunocompetent mice. Patients diagnosed with multiple sclerosis presented reduced vascular endothelial growth factor C in the cerebrospinal fluid, particularly shortly after clinical relapses, possibly indicative of poor meningeal lymphatic function. These data demonstrate that meningeal lymphatics regulate oligodendrocyte function and brain myelination, which might have implications for human demyelinating diseases.


Subject(s)
Brain , Lymphatic Vessels , Meninges , Multiple Sclerosis , Myelin Sheath , Oligodendroglia , Animals , Oligodendroglia/metabolism , Mice , Meninges/immunology , Brain/metabolism , Brain/immunology , Humans , Myelin Sheath/metabolism , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Vascular Endothelial Growth Factor C/metabolism , Mice, Inbred C57BL , Cell Survival , Remyelination , Female , Male , Adaptive Immunity
2.
Article in English | MEDLINE | ID: mdl-39222408

ABSTRACT

This post hoc analysis of the randomized, placebo-controlled N-MOmentum study (NCT02200770) of inebilizumab in neuromyelitis optica spectrum disorder (NMOSD) evaluated relationships between circulating B-cell subsets and aquaporin-4 immunoglobulin G (AQP4-lgG) titers and attacks. Among participants receiving placebo, CD20+ and CD27+ B-cell counts were modestly increased from the pre-attack visit to attack; plasmablast/plasma cell gene signature was increased from baseline to the pre-attack visit (p = 0.016) and from baseline to attack (p = 0.009). With inebilizumab treatment, B-cell subset counts decreased and did not increase with attacks. No difference in change of AQP4-IgG titers from baseline to time of attack was observed.

3.
Front Neurol ; 15: 1437913, 2024.
Article in English | MEDLINE | ID: mdl-39193150

ABSTRACT

Background: Autoimmune encephalitis (AIE) encompasses a spectrum of rare autoimmune-mediated neurological disorders, which are characterized by brain inflammation and dysfunction. Autoantibodies targeting the N-methyl-d-aspartic acid receptor (NMDAR) and leucine-rich glioma-inactivated 1 (LGI1) are the most common subtypes of antibody-positive AIE. Currently, there are no approved therapies for AIE. Interleukin-6 (IL-6) signaling plays a role in the pathophysiology of AIE. Satralizumab, a humanized, monoclonal recycling antibody that specifically targets the IL-6 receptor and inhibits IL-6 signaling, has demonstrated efficacy and safety in another autoantibody-mediated neuroinflammatory disease, aquaporin-4 immunoglobulin G antibody-positive neuromyelitis optica spectrum disorder, and has the potential to be an evidence-based disease modifying treatment in AIE. Objectives: CIELO will evaluate the efficacy, safety, pharmacodynamics, and pharmacokinetics of satralizumab compared with placebo in patients with NMDAR-immunoglobulin G antibody-positive (IgG+) or LGI1-IgG+ AIE. Study design: CIELO (NCT05503264) is a prospective, Phase 3, randomized, double-blind, multicenter, basket study that will enroll approximately 152 participants with NMDAR-IgG+ or LGI1-IgG+ AIE. Prior to enrollment, participants will have received acute first-line therapy. Part 1 of the study will consist of a 52-week primary treatment period, where participants will receive subcutaneous placebo or satralizumab at Weeks 0, 2, 4, and every 4 weeks thereafter. Participants may continue to receive background immunosuppressive therapy, symptomatic treatment, and rescue therapy throughout the study. Following Part 1, participants can enter an optional extension period (Part 2) to continue the randomized, double-blind study drug, start open-label satralizumab, or stop study treatment and continue with follow-up assessments. Endpoints: The primary efficacy endpoint is the proportion of participants with a ≥1-point improvement in the modified Rankin Scale (mRS) score from study baseline and no use of rescue therapy at Week 24. Secondary efficacy assessments include mRS, Clinical Assessment Scale of Autoimmune Encephalitis (CASE), time to rescue therapy, sustained seizure cessation and no rescue therapy, Montreal Cognitive Assessment, and Rey Auditory Verbal Learning Test (RAVLT) measures. Safety, pharmacokinetics, pharmacodynamics, exploratory efficacy, and biomarker endpoints will be captured. Conclusion: The innovative basket study design of CIELO offers the opportunity to yield prospective, robust evidence, which may contribute to the development of evidence-based treatment recommendations for satralizumab in AIE.

4.
Handb Clin Neurol ; 203: 211-233, 2024.
Article in English | MEDLINE | ID: mdl-39174250

ABSTRACT

Stiff Person syndrome (SPS) is a rare autoimmune disorder of the central nervous system characterized by stiffness and spasms in the lumbar and proximal lower limb muscles. Nonmotor symptoms include phobias, anxiety, and depression. SPS exists on a spectrum ranging from a focal disease known as the stiff limb syndrome to progressive encephalomyelitis with rigidity and myoclonus. Collectively, these conditions may be referred to as stiff person spectrum disorders, as they share similar core clinical features and autoantibodies against several neuronal proteins, which are involved in modulating central hyperexcitability. Antibodies against the glutamic acid decarboxylase enzyme are most frequently associated with SPS but their role in disease pathogenesis remains uncertain. Other antibodies associated with SPS now include those against the glycine receptor, amphiphysin, dipeptidyl-peptidase-like protein 6, gephyrin, γ-aminobutyric acid receptor A (GABAAR), and the GABAAR-associated protein. First-line treatments for SPS include diazepam and baclofen. Patients who do not respond adequately may benefit from immunotherapy. Intravenous immunoglobulin has the most supporting evidence, and while several other immunotherapies are used, further trials are required to determine their efficacy. Further studies to establish the precise role of autoantibodies in the pathogenesis of SPS are also needed to better understand and manage this disabling condition.


Subject(s)
Stiff-Person Syndrome , Stiff-Person Syndrome/therapy , Stiff-Person Syndrome/diagnosis , Stiff-Person Syndrome/immunology , Humans , Autoantibodies/immunology , Glutamate Decarboxylase/immunology
5.
Handb Clin Neurol ; 203: 235-269, 2024.
Article in English | MEDLINE | ID: mdl-39174251

ABSTRACT

The autoimmune channelopathies represent a rapidly evolving scientific and clinical domain. The description of channels, expressed on neurons and glia, as targets of autoantibodies in neuromyelitis optica, autoimmune encephalitis, and related syndromes have revolutionized many areas of neurologic practice. To date, tens of surface antibody specificities have been described, a number that is likely to continue to increase. A central paradigm for all these disorders is that of pathogenic autoantibodies which target extracellular epitopes accessible for binding in vivo. Hence, in these disorders, the autoantibodies are causative diagnostic tools, and provide valuable reagents to model the diseases. Their production by B-lineage cells provides opportunities to study and modulate their production. Across these syndromes, early recognition and treatment are critical since most respond to immunotherapies. Yet, several unmet medical needs persist within treated patient populations, and widespread clinical under-recognition remains a challenge. In this review, we summarize the neuroscience and immunologic basis of autoantibody-mediated central nervous system channelopathies, the molecular effects of the autoantibodies, clinical phenotypes, and treatment approaches. We describe progress since the inauguration of the field through to open questions and potential future directions.


Subject(s)
Autoantibodies , Channelopathies , Humans , Autoantibodies/immunology , Channelopathies/immunology , Animals
6.
Continuum (Minneap Minn) ; 30(4): 995-1020, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088286

ABSTRACT

OBJECTIVE: This article focuses on the clinical features and diagnostic evaluations that accurately identify patients with ever-expanding forms of antibody-defined encephalitis. Forms of autoimmune encephalitis are more prevalent than infectious encephalitis and represent treatable neurologic syndromes for which early immunotherapies lead to the best outcomes. LATEST DEVELOPMENTS: A clinically driven approach to identifying many autoimmune encephalitis syndromes is feasible, given the typically distinctive features associated with each antibody. Patient demographics alongside the presence and nature of seizures, cognitive impairment, psychiatric disturbances, movement disorders, and peripheral features provide a valuable set of clinical tools to guide the detection and interpretation of highly specific antibodies. In turn, these clinical features in combination with serologic findings and selective paraclinical testing, direct the rationale for the administration of immunotherapies. Observational studies provide the mainstay of evidence guiding first- and second-line immunotherapy administration in autoimmune encephalitis and, whereas these typically result in some clinical improvements, almost all patients have residual neuropsychiatric deficits, and many experience clinical relapses. An improved pathophysiologic understanding and ongoing clinical trials can help to address these unmet medical needs. ESSENTIAL POINTS: Antibodies against central nervous system proteins characterize various autoimmune encephalitis syndromes. The most common targets include leucine-rich glioma inactivated protein 1 (LGI1), N-methyl-d-aspartate (NMDA) receptors, contactin-associated proteinlike 2 (CASPR2), and glutamic acid decarboxylase 65 (GAD65). Each antibody-associated autoimmune encephalitis typically presents with a recognizable blend of clinical and investigation features, which help differentiate each from alternative diagnoses. The rapid expansion of recognized antibodies and some clinical overlaps support panel-based antibody testing. The clinical-serologic picture guides the immunotherapy regime and offers valuable prognostic information. Patient care should be delivered in conjunction with autoimmune encephalitis experts.


Subject(s)
Encephalitis , Hashimoto Disease , Humans , Encephalitis/diagnosis , Encephalitis/therapy , Encephalitis/immunology , Hashimoto Disease/diagnosis , Hashimoto Disease/therapy , Hashimoto Disease/immunology , Female , Autoantibodies/blood , Autoantibodies/immunology , Male , Immunotherapy/methods , Adult , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/therapy , Autoimmune Diseases of the Nervous System/immunology , Autoimmune Diseases of the Nervous System/physiopathology , Middle Aged
8.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200284, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39141878

ABSTRACT

BACKGROUND AND OBJECTIVES: Autoantibodies against the protein leucine-rich glioma inactivated 1 (LGI1) cause the most common subtype of autoimmune encephalitis with predominant involvement of the limbic system, associated with seizures and memory deficits. LGI1 and its receptor ADAM22 are part of a transsynaptic protein complex that includes several proteins involved in presynaptic neurotransmitter release and postsynaptic glutamate sensing. Autoantibodies against LGI1 increase excitatory synaptic strength, but studies that genetically disrupt the LGI1-ADAM22 complex report a reduction in postsynaptic glutamate receptor-mediated responses. Thus, the mechanisms underlying the increased synaptic strength induced by LGI1 autoantibodies remain elusive, and the contributions of presynaptic molecules to the LGI1-transsynaptic complex remain unclear. We therefore investigated the presynaptic mechanisms that mediate autoantibody-induced synaptic strengthening. METHODS: We studied the effects of patient-derived purified polyclonal LGI1 autoantibodies on synaptic structure and function by combining direct patch-clamp recordings from presynaptic boutons and somata of hippocampal neurons with super-resolution light and electron microscopy of hippocampal cultures and brain slices. We also identified the protein domain mediating the presynaptic effect using domain-specific patient-derived monoclonal antibodies. RESULTS: LGI1 autoantibodies dose-dependently increased short-term depression during high-frequency transmission, consistent with increased release probability. The increased neurotransmission was not related to presynaptic calcium channels because presynaptic Cav2.1 channel density, calcium current amplitude, and calcium channel gating were unaffected by LGI1 autoantibodies. By contrast, application of LGI1 autoantibodies homogeneously reduced Kv1.1 and Kv1.2 channel density on the surface of presynaptic boutons. Direct presynaptic patch-clamp recordings revealed that LGI1 autoantibodies cause a pronounced broadening of the presynaptic action potential. Domain-specific effects of LGI1 autoantibodies were analyzed at the neuronal soma. Somatic action potential broadening was induced by polyclonal LGI1 autoantibodies and patient-derived monoclonal autoantibodies targeting the epitempin domain, but not the leucin-rich repeat domain. DISCUSSION: Our results indicate that LGI1 autoantibodies reduce the density of both Kv1.1 and Kv1.2 on presynaptic boutons, without actions on calcium channel density or function, thereby broadening the presynaptic action potential and increasing neurotransmitter release. This study provides a molecular explanation for the neuronal hyperactivity observed in patients with LGI1 autoantibodies.


Subject(s)
Action Potentials , Autoantibodies , Intracellular Signaling Peptides and Proteins , Presynaptic Terminals , Synaptic Transmission , Autoantibodies/immunology , Autoantibodies/pharmacology , Humans , Animals , Synaptic Transmission/physiology , Intracellular Signaling Peptides and Proteins/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Presynaptic Terminals/metabolism , Action Potentials/physiology , Action Potentials/drug effects , Hippocampus/metabolism , Rats , Kv1.1 Potassium Channel/immunology , Proteins/immunology , Proteins/metabolism , Male , Cells, Cultured
9.
Front Immunol ; 15: 1423149, 2024.
Article in English | MEDLINE | ID: mdl-39050850

ABSTRACT

Introduction: Genetic predisposition to autoimmune encephalitis with antibodies against N-methyl-D-aspartate receptor (NMDAR) is poorly understood. Given the diversity of associated environmental factors (tumors, infections), we hypothesized that human leukocyte antigen (HLA) and killer-cell immunoglobulin-like receptors (KIR), two extremely polymorphic gene complexes key to the immune system, might be relevant for the genetic predisposition to anti-NMDAR encephalitis. Notably, KIR are chiefly expressed by Natural Killer (NK) cells, recognize distinct HLA class I allotypes and play a major role in anti-tumor and anti-infection responses. Methods: We conducted a Genome Wide Association Study (GWAS) with subsequent control-matching using Principal Component Analysis (PCA) and HLA imputation, in a multi-ethnic cohort of anti-NMDAR encephalitis (n=479); KIR and HLA were further sequenced in a large subsample (n=323). PCA-controlled logistic regression was then conducted for carrier frequencies (HLA and KIR) and copy number variation (KIR). HLA-KIR interaction associations were also modeled. Additionally, single cell sequencing was conducted in peripheral blood mononuclear cells from 16 cases and 16 controls, NK cells were sorted and phenotyped. Results: Anti-NMDAR encephalitis showed a weak HLA association with DRB1*01:01~DQA1*01:01~DQB1*05:01 (OR=1.57, 1.51, 1.45; respectively), and DRB1*11:01 (OR=1.60); these effects were stronger in European descendants and in patients without an underlying ovarian teratoma. More interestingly, we found increased copy number variation of KIR2DL5B (OR=1.72), principally due to an overrepresentation of KIR2DL5B*00201. Further, we identified two allele associations in framework genes, KIR2DL4*00103 (25.4% vs. 12.5% in controls, OR=1.98) and KIR3DL3*00302 (5.3% vs. 1.3%, OR=4.44). Notably, the ligands of these KIR2DL4 and KIR3DL3, respectively, HLA-G and HHLA2, are known to act as immune checkpoint with immunosuppressive functions. However, we did not find differences in specific KIR-HLA ligand interactions or HLA-G polymorphisms between cases and controls. Similarly, gene expression of CD56dim or CD56bright NK cells did not differ between cases and controls. Discussion: Our observations for the first time suggest that the HLA-KIR axis might be involved in anti-NMDAR encephalitis. While the genetic risk conferred by the identified polymorphisms appears small, a role of this axis in the pathophysiology of this disease appears highly plausible and should be analyzed in future studies.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Genetic Predisposition to Disease , Genome-Wide Association Study , HLA Antigens , Killer Cells, Natural , Receptors, KIR , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/genetics , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/immunology , Receptors, KIR/genetics , Female , Male , Adult , HLA Antigens/genetics , HLA Antigens/immunology , Middle Aged , Young Adult
12.
Ann Clin Transl Neurol ; 11(7): 1897-1908, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39012808

ABSTRACT

OBJECTIVE: Differentiating forms of autoimmune encephalitis (AE) from other causes of seizures helps expedite immunotherapies in AE patients and informs studies regarding their contrasting pathophysiology. We aimed to investigate whether and how Nuclear Magnetic Resonance (NMR)-based metabolomics could differentiate AE from drug-resistant epilepsy (DRE), and stratify AE subtypes. METHODS: This study recruited 238 patients: 162 with DRE and 76 AE, including 27 with contactin-associated protein-like 2 (CASPR2), 29 with leucine-rich glioma inactivated 1 (LGI1) and 20 with N-methyl-d-aspartate receptor (NMDAR) antibodies. Plasma samples across the groups were analyzed using NMR spectroscopy and compared with multivariate statistical techniques, such as orthogonal partial least squares discriminant analysis (OPLS-DA). RESULTS: The OPLS-DA model successfully distinguished AE from DRE patients with a high predictive accuracy of 87.0 ± 3.1% (87.9 ± 3.4% sensitivity and 86.3 ± 3.6% specificity). Further, pairwise OPLS-DA models were able to stratify the three AE subtypes. Plasma metabolomic signatures of AE included decreased high-density lipoprotein (HDL, -(CH2)n-, -CH3), phosphatidylcholine and albumin (lysyl moiety). AE subtype-specific metabolomic signatures were also observed, with increased lactate in CASPR2, increased lactate, glucose, and decreased unsaturated fatty acids (UFA, -CH2CH=) in LGI1, and increased glycoprotein A (GlycA) in NMDAR-antibody patients. INTERPRETATION: This study presents the first non-antibody-based biomarker for differentiating DRE, AE and AE subtypes. These metabolomics signatures underscore the potential relevance of lipid metabolism and glucose regulation in these neurological disorders, offering a promising adjunct to facilitate the diagnosis and therapeutics.


Subject(s)
Drug Resistant Epilepsy , Encephalitis , Humans , Female , Drug Resistant Epilepsy/blood , Drug Resistant Epilepsy/diagnosis , Male , Adult , Encephalitis/blood , Encephalitis/diagnosis , Middle Aged , Diagnosis, Differential , Young Adult , Autoantibodies/blood , Hashimoto Disease/blood , Hashimoto Disease/diagnosis , Metabolomics , Nerve Tissue Proteins/blood , Adolescent , Membrane Proteins/blood , Magnetic Resonance Spectroscopy , Intracellular Signaling Peptides and Proteins/blood , Biomarkers/blood , Receptors, N-Methyl-D-Aspartate/immunology , Autoimmune Diseases of the Nervous System/blood , Autoimmune Diseases of the Nervous System/diagnosis , Autoimmune Diseases of the Nervous System/immunology
13.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200225, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838283

ABSTRACT

BACKGROUND AND OBJECTIVES: Patients with ongoing seizures are usually not allowed to drive. The prognosis for seizure freedom is favorable in patients with autoimmune encephalitis (AIE) with antibodies against NMDA receptor (NMDAR), leucine-rich glioma-inactivated 1 (LGI1), contactin-associated protein-like 2 (CASPR2), and the gamma-aminobutyric-acid B receptor (GABABR). We hypothesized that after a seizure-free period of 3 months, patients with AIE have a seizure recurrence risk of <20% during the subsequent 12 months. This would render them eligible for noncommercial driving according to driving regulations in several countries. METHODS: This retrospective multicenter cohort study analyzed follow-up data from patients aged 15 years or older with seizures resulting from NMDAR-, LGI1-, CASPR2-, or GABABR-AIE, who had been seizure-free for ≥3 months. We used Kaplan-Meier (KM) estimates for the seizure recurrence risk at 12 months for each antibody group and tested for the effects of potential covariates with regression models. RESULTS: We included 383 patients with NMDAR-, 440 with LGI1-, 114 with CASPR2-, and 44 with GABABR-AIE from 14 international centers. After being seizure-free for 3 months after an initial seizure period, we calculated the probability of remaining seizure-free for another 12 months (KM estimate) as 0.89 (95% confidence interval [CI] 0.85-0.92) for NMDAR, 0.84 (CI 0.80-0.88) for LGI1, 0.82 (CI 0.75-0.90) for CASPR2, and 0.76 (CI 0.62-0.93) for GABABR. DISCUSSION: Taking a <20% recurrence risk within 12 months as sufficient, patients with NMDAR-AIE and LGI1-AIE could be considered eligible for noncommercial driving after having been seizure-free for 3 months.


Subject(s)
Autoantibodies , Encephalitis , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Nerve Tissue Proteins , Receptors, GABA-B , Recurrence , Humans , Female , Male , Adult , Intracellular Signaling Peptides and Proteins/immunology , Autoantibodies/blood , Middle Aged , Encephalitis/immunology , Retrospective Studies , Receptors, GABA-B/immunology , Nerve Tissue Proteins/immunology , Young Adult , Membrane Proteins/immunology , Receptors, N-Methyl-D-Aspartate/immunology , Seizures/etiology , Seizures/immunology , Hashimoto Disease/immunology , Hashimoto Disease/blood , Aged , Adolescent , Follow-Up Studies , Proteins/immunology , Cohort Studies
14.
Immunity ; 57(7): 1696-1709.e10, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38878770

ABSTRACT

Aicardi-Goutières syndrome (AGS) is an autoinflammatory disease characterized by aberrant interferon (IFN)-α production. The major cause of morbidity in AGS is brain disease, yet the primary source and target of neurotoxic IFN-α remain unclear. Here, we demonstrated that the brain was the primary source of neurotoxic IFN-α in AGS and confirmed the neurotoxicity of intracerebral IFN-α using astrocyte-driven Ifna1 misexpression in mice. Using single-cell RNA sequencing, we demonstrated that intracerebral IFN-α-activated receptor (IFNAR) signaling within cerebral endothelial cells caused a distinctive cerebral small vessel disease similar to that observed in individuals with AGS. Magnetic resonance imaging (MRI) and single-molecule ELISA revealed that central and not peripheral IFN-α was the primary determinant of microvascular disease in humans. Ablation of endothelial Ifnar1 in mice rescued microvascular disease, stopped the development of diffuse brain disease, and prolonged lifespan. These results identify the cerebral microvasculature as a primary mediator of IFN-α neurotoxicity in AGS, representing an accessible target for therapeutic intervention.


Subject(s)
Brain , Interferon-alpha , Microvessels , Nervous System Malformations , Receptor, Interferon alpha-beta , Animals , Humans , Mice , Interferon-alpha/metabolism , Brain/metabolism , Brain/pathology , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , Microvessels/pathology , Nervous System Malformations/genetics , Autoimmune Diseases of the Nervous System/immunology , Endothelial Cells/metabolism , Mice, Knockout , Male , Female , Signal Transduction , Mice, Inbred C57BL , Astrocytes/metabolism , Disease Models, Animal
15.
J Neurosci ; 44(28)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38830760

ABSTRACT

NMDA receptors (NMDARs) may be crucial to working memory (WM). Computational models predict that they sustain neural firing and produce associative memory, which may underpin maintaining and binding information, respectively. We test this in patients with antibodies to NMDAR (n = 10, female) and compare them with healthy control participants (n = 55, 20 male, 35 female). Patients were tested after recovery with a task that separates two aspects of WM: sustaining attention and feature binding. Participants had to remember two colored arrows. Then attention was directed to one of them. After a variable delay, they reported the direction of either the same arrow (congruent cue) or of the other arrow (incongruent cue). We asked how congruency affected recall precision and measured types of error. Patients had difficulty in both sustaining attention to an item over time and feature binding. Controls were less precise after longer delays and incongruent cues. In contrast, patients did not benefit from congruent cues at longer delays [group × congruency (long condition); p = 0.041], indicating they could not sustain attention. Additionally, patients reported the wrong item (misbinding errors) more than controls after congruent cues [group × delay (congruent condition), main effect of group; p ≤ 0.001]. Our results suggest NMDARs are critical for both maintaining attention and feature binding.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Attention , Memory, Short-Term , Humans , Male , Female , Memory, Short-Term/physiology , Adult , Attention/physiology , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/physiopathology , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/immunology , Young Adult , Middle Aged , Receptors, N-Methyl-D-Aspartate/immunology , Adolescent , Cues
16.
Br J Psychiatry ; 224(6): 252-257, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38699852

ABSTRACT

Leucine-rich glioma-inactivated 1-antibody-encephalitis is a treatable and potentially reversible cause of cognitive and psychiatric presentations, and may mimic cognitive decline, rapidly progressive dementia and complex psychosis in older patients. This aetiology is of immediate relevance given the alternative treatment pathway required, compared with other conditions presenting with cognitive deficits.


Subject(s)
Autoantibodies , Dementia , Humans , Dementia/therapy , Autoantibodies/blood , Encephalitis/therapy , Encephalitis/diagnosis , Encephalitis/immunology , Intracellular Signaling Peptides and Proteins , Diagnosis, Differential , Aged , Mental Health Services , Female , Male
17.
Nat Hum Behav ; 8(7): 1366-1382, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38684870

ABSTRACT

The role of the hippocampus in decision-making is beginning to be more understood. Because of its prospective and inferential functions, we hypothesized that it might be required specifically when decisions involve the evaluation of uncertain values. A group of individuals with autoimmune limbic encephalitis-a condition known to focally affect the hippocampus-were tested on how they evaluate reward against uncertainty compared to reward against another key attribute: physical effort. Across four experiments requiring participants to make trade-offs between reward, uncertainty and effort, patients with acute limbic encephalitis demonstrated blunted sensitivity to reward and effort whenever uncertainty was considered, despite demonstrating intact uncertainty sensitivity. By contrast, the valuation of these two attributes (reward and effort) was intact on uncertainty-free tasks. Reduced sensitivity to changes in reward under uncertainty correlated with the severity of hippocampal damage. Together, these findings provide evidence for a context-sensitive role of the hippocampus in value-based decision-making, apparent specifically under conditions of uncertainty.


Subject(s)
Decision Making , Hippocampus , Reward , Humans , Hippocampus/physiopathology , Uncertainty , Decision Making/physiology , Male , Female , Middle Aged , Adult , Aged , Magnetic Resonance Imaging
18.
Brain ; 147(8): 2636-2642, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38662480

ABSTRACT

One striking clinical hallmark in patients with autoantibodies to leucine-rich glioma inactivated 1 (LGI1) is the very frequent focal seizure semiologies, including faciobrachial dystonic seizures (FBDS), in addition to the amnesia. Polyclonal serum IgGs have successfully modelled the cognitive changes in vivo but not seizures. Hence, it remains unclear whether LGI1-autoantibodies are sufficient to cause seizures. We tested this with the molecularly precise monoclonal antibodies directed against LGI1 [LGI1-monoclonal antibodies (mAbs)], derived from patient circulating B cells. These were directed towards both major domains of LGI1, leucine-rich repeat and epitempin repeat, and infused intracerebroventricularly over 7 days into juvenile male Wistar rats using osmotic pumps. Continuous wireless EEG was recorded from a depth electrode placed in hippocampal CA3 plus behavioural tests for memory and hyperexcitability were performed. Following infusion completion (Day 9), post-mortem brain slices were studied for antibody binding and effects on Kv1.1. The LGI1-mAbs bound most strongly in the hippocampal CA3 region and induced a significant reduction in Kv1.1 cluster number in this subfield. By comparison to control-Ab injected rats video-EEG analysis over 9 days revealed convulsive and non-convulsive seizure activity in rats infused with LGI1-mAbs, with a significant number of ictal events. Memory was not impaired in the novel object recognition test. Peripherally-derived human LGI1-mAbs infused into rodent CSF provide strong evidence of direct in vivo epileptogenesis with molecular correlations. These findings fulfill criteria for LGI1-antibodies in seizure causation.


Subject(s)
Antibodies, Monoclonal , Autoantibodies , Intracellular Signaling Peptides and Proteins , Rats, Wistar , Animals , Male , Rats , Intracellular Signaling Peptides and Proteins/immunology , Humans , Seizures/immunology , Electroencephalography , Proteins/immunology , Epilepsy/immunology
20.
JAMA Neurol ; 81(5): 525-533, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38497971

ABSTRACT

Importance: Rapid and accurate diagnosis of autoimmune encephalitis encourages prompt initiation of immunotherapy toward improved patient outcomes. However, clinical features alone may not sufficiently narrow the differential diagnosis, and awaiting autoantibody results can delay immunotherapy. Objective: To identify simple magnetic resonance imaging (MRI) characteristics that accurately distinguish 2 common forms of autoimmune encephalitis, LGI1- and CASPR2-antibody encephalitis (LGI1/CASPR2-Ab-E), from 2 major differential diagnoses, viral encephalitis (VE) and Creutzfeldt-Jakob disease (CJD). Design, Setting, and Participants: This cross-sectional study involved a retrospective, blinded analysis of the first available brain MRIs (taken 2000-2022) from 192 patients at Oxford University Hospitals in the UK and Mayo Clinic in the US. These patients had LGI1/CASPR2-Ab-E, VE, or CJD as evaluated by 2 neuroradiologists (discovery cohort; n = 87); findings were validated in an independent cohort by 3 neurologists (n = 105). Groups were statistically compared with contingency tables. Data were analyzed in 2023. Main Outcomes and Measures: MRI findings including T2 or fluid-attenuated inversion recovery (FLAIR) hyperintensities, swelling or volume loss, presence of gadolinium contrast enhancement, and diffusion-weighted imaging changes. Correlations with clinical features. Results: Among 192 participants with MRIs reviewed, 71 were female (37%) and 121 were male (63%); the median age was 66 years (range, 19-92 years). By comparison with VE and CJD, in LGI1/CASPR2-Ab-E, T2 and/or FLAIR hyperintensities were less likely to extend outside the temporal lobe (3/42 patients [7%] vs 17/18 patients [94%] with VE; P < .001, and 3/4 patients [75%] with CJD; P = .005), less frequently exhibited swelling (12/55 [22%] with LGI1/CASPR2-Ab-E vs 13/22 [59%] with VE; P = .003), and showed no diffusion restriction (0 patients vs 16/22 [73%] with VE and 8/10 [80%] with CJD; both P < .001) and rare contrast enhancement (1/20 [5%] vs 7/17 [41%] with VE; P = .01). These findings were validated in an independent cohort and generated an area under the curve of 0.97, sensitivity of 90%, and specificity of 95% among cases with T2/FLAIR hyperintensity in the hippocampus and/or amygdala. Conclusions and Relevance: In this study, T2 and/or FLAIR hyperintensities confined to the temporal lobes, without diffusion restriction or contrast enhancement, robustly distinguished LGI1/CASPR2-Ab-E from key differential diagnoses. These observations should assist clinical decision-making toward expediting immunotherapy. Their generalizability to other forms of autoimmune encephalitis and VE should be examined in future studies.


Subject(s)
Autoantibodies , Encephalitis , Intracellular Signaling Peptides and Proteins , Magnetic Resonance Imaging , Membrane Proteins , Nerve Tissue Proteins , Humans , Male , Female , Aged , Intracellular Signaling Peptides and Proteins/immunology , Middle Aged , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Autoantibodies/immunology , Encephalitis/diagnostic imaging , Encephalitis/immunology , Encephalitis/pathology , Retrospective Studies , Nerve Tissue Proteins/immunology , Membrane Proteins/immunology , Adult , Aged, 80 and over , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Creutzfeldt-Jakob Syndrome/immunology , Creutzfeldt-Jakob Syndrome/pathology , Diagnosis, Differential , Brain/diagnostic imaging , Brain/pathology , Hashimoto Disease/diagnostic imaging , Hashimoto Disease/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL