Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Expert Opin Drug Deliv ; : 1-17, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39268761

ABSTRACT

BACKGROUND: Adrenal insufficiency is usually diagnosed in children who will need lifelong hydrocortisone therapy. However, medicines for pediatrics, in terms of dosage and acceptability, are currently unavailable. RESEARCH DESIGN AND METHODS: Semi-solid extrusion (SSE) 3D printing (3DP) was utilized for manufacturing of personalized and chewable hydrocortisone formulations (printlets) for an upcoming clinical study in children at Vall d'Hebron University Hospital in Barcelona, Spain. The 3DP process was validated using a specific software for dynamic dose modulation. RESULTS: The printlets contained doses ranging from 1 to 6 mg hydrocortisone in three different flavor and color combinations to aid adherence among the pediatric patients. The pharma-ink (mixture of drugs and excipients) was assessed for its rheological behavior to ensure reproducibility of printlets through repeated printing cycles. The printlets showed immediate hydrocortisone release and were stable for 1 month of storage, adequate for prescribing instructions during the clinical trial. CONCLUSIONS: The results confirm the suitability and safety of the developed printlets for use in the clinical trial. The required technical information from The Spanish Medicines Agency for this clinical trial application was compiled to serve as guidelines for healthcare professionals seeking to apply for and conduct clinical trials on 3DP oral dosage forms.

2.
Int J Pharm ; 661: 124306, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38871137

ABSTRACT

Breast cancer is the most frequently diagnosed cancer in women worldwide, and non-adherence to adjuvant hormonotherapy can negatively impact cancer recurrence and relapse. Non-adherence is associated with side effects of hormonotherapy. Pharmacological strategies to mitigate the side effects include coadministration of antidepressants, however patients remain non-adherent. The aim of this work was to develop medicines containing both hormonotherapy, tamoxifen (20 mg), along with anti-depressants, either venlafaxine (37.5 or 75 mg) or duloxetine (30 or 60 mg), to assess the acceptability and efficacy of this personalised approach for mitigating tamoxifen side effects in a clinical trial. A major criterion for the developed medicines was the production rate, specified at minimum 200 dosage units per hour to produce more than 40,000 units required for the clinical trial. A novel capsule filling approach enabled by the pharmaceutical 3D printer M3DIMAKER 2 was developed for this purpose. Firstly, semi-solid extrusion 3D printing enabled the filling of tamoxifen pharma-ink prepared according to French compounding regulation, followed by filling of commercial venlafaxine or duloxetine pellets enabled by the development of an innovative pellet dispensing printhead. The medicines were successfully developed and produced in the clinical pharmacy department of the cancer hospital Gustave Roussy, located in Paris, France. The developed medicines satisfied quality and production rate requirements and were stable for storage up to one year to cover the duration of the trial. This work demonstrates the feasibility of developing and producing combined tamoxifen medicines in a hospital setting through a pharmaceutical 3D printer to enable a clinical trial with a high medicines production rate requirement.


Subject(s)
Breast Neoplasms , Duloxetine Hydrochloride , Precision Medicine , Printing, Three-Dimensional , Tamoxifen , Venlafaxine Hydrochloride , Tamoxifen/administration & dosage , Duloxetine Hydrochloride/administration & dosage , Humans , Precision Medicine/methods , Venlafaxine Hydrochloride/administration & dosage , Breast Neoplasms/drug therapy , Female , Antidepressive Agents/administration & dosage , Drug Compounding/methods , Antineoplastic Agents, Hormonal/administration & dosage
3.
Trends Pharmacol Sci ; 44(6): 379-393, 2023 06.
Article in English | MEDLINE | ID: mdl-37100732

ABSTRACT

Pharmaceutical 3D printing (3DP) has attracted significant interest over the past decade for its ability to produce personalised medicines on demand. However, current quality control (QC) requirements for traditional large-scale pharmaceutical manufacturing are irreconcilable with the production offered by 3DP. The US Food and Drug Administration (FDA) and the UK Medicines and Healthcare Products Regulatory Agency (MHRA) have recently published documents supporting the implementation of 3DP for point-of-care (PoC) manufacturing along with regulatory hurdles. The importance of process analytical technology (PAT) and non-destructive analytical tools in translating pharmaceutical 3DP has experienced a surge in recognition. This review seeks to highlight the most recent research on non-destructive pharmaceutical 3DP analysis, while also proposing plausible QC systems that complement the pharmaceutical 3DP workflow. In closing, outstanding challenges in integrating these analytical tools into pharmaceutical 3DP workflows are discussed.


Subject(s)
Printing, Three-Dimensional , Technology, Pharmaceutical , Humans , Pharmaceutical Preparations
SELECTION OF CITATIONS
SEARCH DETAIL