Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Water Res ; 157: 346-355, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30965161

ABSTRACT

Polyphosphate (poly-P) is a major constituent in activated sludge from wastewater treatment plants with enhanced biological phosphorus removal due to poly-P synthesis by poly-P accumulating organisms where it plays an important role for recovery of phosphorus from waste water. Our aim was to develop a reliable protocol for poly-P quantification by 31P NMR spectroscopy. This has so far been complicated by the risks of inefficient extraction and poly-P hydrolysis in the extracts. A protocol for complete extraction, identification and quantification of poly-P in activated sludge from a waste water treatment plant was identified based on test and evaluation of existing extraction protocols in combination with poly-P determination and quantification by solution and solid state 31P NMR spectroscopy. The total poly-P middle group content was quantified by solid state NMR for comparison with the poly-P middle groups quantified by solution NMR, which is novel. Three different extraction protocols previously used in literature were compared: 1) a single 0.25 M NaOH-0.05 M EDTA extraction, 2) a 0.05 M EDTA pre-extraction followed by a 0.25 M NaOH main extraction and 3) a 0.05 M EDTA pre-extraction followed by a 0.25 M NaOH-0.05 M EDTA main extraction. The results showed that the extraction protocol 2 was optimal for fresh activated sludge, extracting 10.8 ±â€¯0.4 to 11.4 ±â€¯1.2 mgP/gDW poly-P. Extraction protocols 1 and 3 extracted less than 9.4 ±â€¯0.5 mgP/gDW poly-P. A comparison of the quantification of poly-P by 31P solution NMR and by 31P solid state NMR spectroscopy of lyophilised activated sludge showed 86 ±â€¯9% extraction efficiency of poly-P, which confirms that the extraction protocol recovered most of the poly-P from the samples without pronounced poly-P degradation.


Subject(s)
Sewage , Water Purification , Magnetic Resonance Spectroscopy , Phosphorus , Polyphosphates , Wastewater , Water
2.
Environ Sci Technol ; 52(11): 6508-6517, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29733209

ABSTRACT

Integrated buffer zones (IBZs) represent a novel form of edge-of-field technology in Northwest Europe. Contrary to the common riparian buffer strips, IBZs collect tile drainage water from agricultural fields by combining a ditch-like pond (POND), where soil particles can settle, and a flow-through filter bed (FILTERBED) planted with Alnus glutinosa (L.), a European alder (black alder). The first experimental IBZ facility was constructed and thoroughly tested in Denmark for its capability to retain various nitrogen (N) and phosphorus (P) species within the first three years after construction. We calculated the water and nutrient budget for the total IBZ and for the two compartments, POND and FILTERBED, separately. Furthermore, a tracer experiment using sodium bromide was conducted in order to trace the water flow and estimate the hydraulic residence time in the FILTERBEDs. The monthly average removal efficiency amounted to 10-67% for total N and 31-69% for total P, with performance being highest during the warm season. Accordingly, we suggest that IBZs may be a valuable modification of dry buffer strips in order to mitigate the adverse impacts of high nutrient loading from agricultural fields on the aquatic environment.


Subject(s)
Nitrogen , Phosphorus , Agriculture , Denmark , Europe
3.
Environ Technol ; 38(17): 2185-2192, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27758137

ABSTRACT

Measures such as storm water ponds, constructed wetlands and buffer strips along streams are used to reduce diffuse phosphorus (P) loading to surface waters. These systems often retain particulate P well, whereas the retention of dissolved P is less efficient and might require addition of P adsorbents. In this study, we screened waterwork ochre sludge (WWS) originating from groundwater treatment and ochre sludge from ochre precipitation basins along streams for their applicability as P adsorbents at ambient P concentrations. We compared with a commercial ferric hydroxide (CFH 12™) for which adsorption properties is well described. The adsorption capacity of 9 products was measured over 24 h at different P concentrations (5-2000 µg L-1), a range that covers Danish drainage water and stormwater. WWS desorbed phosphate at concentrations below 50-200 µg P L-1 and should only be considered for use in systems with a constantly high load of dissolved P. High affinity combined with little or no desorption characterized the commercial product and the ochre sludge from the precipitation basins, rendering these useful for treating drainage water and storm water. The study underlines that waste products may act as potentially effective P adsorbers at environmentally relevant P levels.


Subject(s)
Ferric Compounds , Fresh Water , Phosphates , Water Purification , Adsorption , Iron , Phosphorus , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL