Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 642
Filter
1.
J Clin Med ; 13(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38929910

ABSTRACT

Background: Percutaneous coronary intervention (PCI) with a drug-eluting stent (DES) for chronic total coronary occlusions (CTOs) improves clinical symptoms and quality of life. However, data on drug-coated balloon (DCB)-based PCI in CTO lesions are limited. Methods: A total of 200 patients were successfully treated for CTO lesions, either with DCB alone or in combination with DES (DCB-based PCI). They were compared with 661 patients who underwent second-generation DES implantation for CTO from the PTRG-DES registry (DES-only PCI). The endpoint was major adverse cardiovascular events (MACEs), which included a composite of cardiac death, myocardial infarction, stent or target lesion thrombosis, target vessel revascularization, and major bleeding at 2 years. Results: In the DCB-based PCI group, 49.0% of patients were treated with DCB only and 51.0% underwent the hybrid approach combining DCB with DES. Bailout stenting was performed in seven patients (3.5%). The DCB-based PCI group exhibited fewer stents (1.0; IQR: 0.0-1.0 and 2.0; IQR: 1.0-3.0, p < 0.001), shorter stent lengths (6.5 mm; IQR: 0.0-38.0 mm and 42.0 mm; IQR: 28.0-67.0 mm, p < 0.001), and lower usage of small stents with a diameter of 2.5 mm or less (9.8% and 36.5%, p < 0.001). Moreover, the DCB-based PCI group had a lower rate of MACEs than the DES-only PCI group (3.1% and 13.2%, p = 0.001) at 2-year follow-up. Conclusions: The DCB-based PCI approach significantly reduced the stent burden, particularly in the usage of small stent diameters, and resulted in a lower risk of MACEs compared to DES-only PCI in CTO lesions.

2.
Stem Cell Res Ther ; 15(1): 171, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886860

ABSTRACT

BACKGROUND: There is a significant demand for intermediate-scale bioreactors in academic and industrial institutions to produce cells for various applications in drug screening and/or cell therapy. However, the application of these bioreactors in cultivating hiPSC-derived immune cells and other blood cells is noticeably lacking. To address this gap, we have developed a xeno-free and chemically defined intermediate-scale bioreactor platform, which allows for the generation of standardized human iPSC-derived hematopoietic organoids and subsequent continuous production of macrophages (iPSC-Mac). METHODS: We describe a novel method for intermediate-scale immune cell manufacturing, specifically the continuous production of functionally and phenotypically relevant macrophages that are harvested on weekly basis for multiple weeks. RESULTS: The continuous production of standardized human iPSC-derived macrophages (iPSC-Mac) from 3D hematopoietic organoids also termed hemanoids, is demonstrated. The hemanoids exhibit successive stage-specific embryonic development, recapitulating embryonic hematopoiesis. iPSC-Mac were efficiently and continuously produced from three different iPSC lines and exhibited a consistent and reproducible phenotype, as well as classical functionality and the ability to adapt towards pro- and anti-inflammatory activation stages. Single-cell transcriptomic analysis revealed high macrophage purity. Additionally, we show the ability to use the produced iPSC-Mac as a model for testing immunomodulatory drugs, exemplified by dexamethasone. CONCLUSIONS: The novel method demonstrates an easy-to-use intermediate-scale bioreactor platform that produces prime macrophages from human iPSCs. These macrophages are functionally active and require no downstream maturation steps, rendering them highly desirable for both therapeutic and non-therapeutic applications.


Subject(s)
Bioreactors , Induced Pluripotent Stem Cells , Macrophages , Organoids , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Macrophages/cytology , Macrophages/metabolism , Organoids/cytology , Organoids/metabolism , Cell Differentiation , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Hematopoiesis
3.
Bioorg Chem ; 150: 107600, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38945086

ABSTRACT

In this study, we investigated how the replacement of the tetrahydrothiophene ring of biotin with either an oxolane or (methyl)pyrrolidine moiety may affect its molecular interactions, in an effort to identify alternative affinity ligands suitable for in vitro and in vivo applications in synthetic biology. Initial molecular dynamics (MD) simulations suggested the potential formation of a hydrogen bond between either the oxygen or nitrogen atom of the envisaged tetrahydroheteryl analogues and the Thr90 residue of streptavidin, mirroring the sulfur-centered hydrogen bond detected by the crystallographic analysis of the biotin-streptavidin interaction. Therefore, oxy-, aza-, and N-methylazabiotin were readily synthesized starting from chiral five- or six-carbon sugar precursors. Based on fluorescence-based titration experiments using the corresponding fluorescein conjugates, oxybiotin showed a binding behavior similar to biotin with streptavidin, while both amino analogues displayed lower binding capacities. Notably, azabiotin exhibited a pH-dependent interaction profile, demonstrating enhanced binding under acidic conditions but weaker binding under basic pH, which could be exploited for various purposes.

4.
Biomed Pharmacother ; 177: 116996, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897158

ABSTRACT

Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.

6.
Mol Ther ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38796700

ABSTRACT

Prader-Willi syndrome (PWS) is the prototypic genomic disorder resulting from deficiency of paternally expressed genes in the human chromosome 15q11-q13 region. The unique molecular mechanism involving epigenetic modifications renders PWS as the most attractive candidate to explore a proof-of-concept of epigenetic therapy in humans. The premise is that epigenetic modulations could reactivate the repressed PWS candidate genes from the maternal chromosome and offer therapeutic benefit. Our prior study identifies an EHMT2/G9a inhibitor, UNC0642, that reactivates the expression of PWS genes via reduction of H3K9me2. However, low brain permeability and poor oral bioavailability of UNC0642 preclude its advancement into translational studies in humans. In this study, a newly developed inhibitor, MS152, modified from the structure of UNC0642, has better brain penetration and greater potency and selectivity against EHMT2/G9a. MS152 reactivated maternally silenced PWS genes in PWS patient fibroblasts and in brain and liver tissues of PWS mouse models. Importantly, the molecular efficacy of oral administration is comparable with the intraperitoneal route. MS152 treatment in newborns ameliorates the perinatal lethality and poor growth, maintaining reactivation in a PWS mouse model at postnatal 90 days. Our findings provide strong support for MS152 as a first-in-class inhibitor to advance the epigenetic therapy of PWS in humans.

7.
Ann Clin Lab Sci ; 54(1): 126-130, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38514052

ABSTRACT

OBJECTIVE: We assessed the performance of the Humasis COVID-19 AgHS Test (Humasis, Korea), a novel antigen rapid diagnostic test (Ag-RDT) based on lateral flow immunoassay. METHODS: 85 SARS-CoV-2-positive and 155 SARS-CoV-2-negative nasopharyngeal swab specimens confirmed by rRT-PCR were tested using the Humasis and PBCheck Ag-RDTs. The analytical specificity of the Humasis Ag-RDT was evaluated using 27 strains of human respiratory pathogens. RESULTS: The overall sensitivity and specificity were 72.9% and 99.4% for the Humasis Ag-RDT and 64.7% and 100% for the PBCheck Ag-RDT, respectively. The sensitivity for specimens with Ct≤25 was 100% for both Ag-RDTs. The Humasis Ag-RDT showed no cross-reactivity with other respiratory pathogens. CONCLUSION: Our data suggests that the Humasis Ag-RDT can be a useful diagnostic tool for the detection of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Rapid Diagnostic Tests , SARS-CoV-2 , Communication , Sensitivity and Specificity , Antigens, Viral , COVID-19 Testing
8.
Microbiol Spectr ; 12(4): e0424923, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38451228

ABSTRACT

The aim of this study was to compare the performance of the newly developed SMG HHV-6 Q Real-Time PCR Kit (SMG assay) with the RealStar HHV-6 PCR Kit (RealStar assay). The analytical sensitivity and specificity, linearity, and precision of the SMG assay were evaluated. The clinical performance of the SMG assay was assessed and compared with that of the RealStar assay using 207 clinical specimens (HHV-6A positive, n = 51; HHV-6B positive, n = 64; HHV-6A/B negative, n = 92). The limit of detection of the SMG assay was 2.92 log10 copies/mL for HHV-6A DNA and 2.88 log10 copies/mL for HHV-6B DNA. The linear range was determined to be 3.40-9.00 log10 copies/mL for both viruses. Intra- and inter-assay variability were below 5% at concentrations ranging from 4 to 9 log10 copies/mL. No cross-reactivity was observed with the 25 microorganisms included in the specificity panel. The clinical sensitivity and specificity of the SMG and RealStar assays compared to in-house polymerase chain reaction and sequencing were as follows: SMG assay, 98.0% and 100% for HHV-6A DNA, respectively, and 96.9% and 100% for HHV-6B DNA, respectively; RealStar assay, 98.0% and 100% for HHV-6A DNA, respectively, and 90.6% and 100% for HHV-6B DNA, respectively. The correlation coefficients between viral loads measured by the two assays were 0.948 and 0.975, with mean differences of 0.62 and 0.32 log10 copies/mL for HHV-6A and HHV-6B DNA, respectively. These results demonstrate that the SMG assay is a sensitive and reliable tool for the quantitative detection and differentiation of HHV-6A and HHV-6B DNA.IMPORTANCEQuantitative real-time PCR (qPCR) that can distinguish between HHV-6A and HHV-6B DNA is recommended for diagnosis of active infection. The SMG HHV-6 Q Real-Time PCR Kit (SMG assay) is a newly developed qPCR assay that can differentiate between HHV-6A and HHV-6B DNA; however, little is known about its performance. In this study, we assessed the performance of the SMG assay and compared it with that of a commercially available qPCR assay, the RealStar HHV-6 PCR Kit (RealStar assay). The SMG assay demonstrated excellent analytical sensitivity and specificity, precision, and linearity. Furthermore, the viral loads measured by the SMG assay were highly correlated with those measured by the RealStar assay. Our results suggest that the SMG assay is a useful diagnostic tool for quantitative detection and differentiation of HHV-6A and HHV-6B DNA.


Subject(s)
Herpesvirus 6, Human , Roseolovirus Infections , Humans , Real-Time Polymerase Chain Reaction/methods , Herpesvirus 6, Human/genetics , DNA, Viral/genetics , Sensitivity and Specificity , Viral Load/methods , Roseolovirus Infections/diagnosis
9.
Blood Res ; 59(1): 1, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38485792

ABSTRACT

Genomic structural variations in myeloid, lymphoid, and plasma cell neoplasms can provide key diagnostic, prognostic, and therapeutic information while elucidating the underlying disease biology. Several molecular diagnostic approaches play a central role in evaluating hematological malignancies. Traditional cytogenetic diagnostic assays, such as chromosome banding and fluorescence in situ hybridization, are essential components of the current diagnostic workup that guide clinical care for most hematologic malignancies. However, each assay has inherent limitations, including limited resolution for detecting small structural variations and low coverage, and can only detect alterations in the target regions. Recently, the rapid expansion and increasing availability of novel and comprehensive genomic technologies have led to their use in clinical laboratories for clinical management and translational research. This review aims to describe the clinical relevance of structural variations in hematologic malignancies and introduce genomic technologies that may facilitate personalized tumor characterization and treatment.

10.
Stem Cells Dev ; 33(7-8): 189-199, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366745

ABSTRACT

Research on tooth regeneration using human-induced pluripotent stem cells (hiPSCs) is valuable for autologous dental regeneration. Acquiring mesenchymal and epithelial cells as a resource for dental regeneration is necessary because mesenchymal-epithelial interactions play an essential role in dental development. We reported the establishment of hiPSCs-derived dental epithelial-like cell (EPI-iPSCs), but hiPSCs-derived dental mesenchymal stem cells (MSCs) have not yet been reported. This study was conducted to establish hiPSCs-derived MSCs and to differentiate them into dental cells with EPI-iPSCs. Considering that dental MSCs are derived from the neural crest, hiPSCs were induced to differentiate into MSCs through neural crest formation to acquire the properties of dental MSCs. To differentiate hiPSCs into MSCs through neural crest formation, established hiPSCs were cultured and differentiated with PA6 stromal cells and differentiated hiPSCs formed neurospheres on ultralow-attachment plates. Neurospheres were differentiated into MSCs in serum-supplemented medium. Neural crest-mediated MSCs (NC-MSCs) continuously showed typical MSC morphology and expressed MSC markers. After 8 days of odontogenic induction, the expression levels of odontogenic/mineralization-related genes and dentin sialophosphoprotein (DSPP) proteins were increased in the NC-MSCs alone group in the absence of coculturing with dental epithelial cells. The NC-MSCs and EPI-iPSCs coculture groups showed high expression levels of amelogenesis/odontogenic/mineralization-related genes and DSPP proteins. Furthermore, the NC-MSCs and EPI-iPSCs coculture group yielded calcium deposits earlier than the NC-MSCs alone group. These results indicated that established NC-MSCs from hiPSCs have dental differentiation capacity with dental epithelial cells. In addition, it was confirmed that hiPSCs-derived dental stem cells could be a novel cell source for autologous dental regeneration.


Subject(s)
Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Humans , Cell Differentiation , Epithelial-Mesenchymal Transition , Coculture Techniques , Cells, Cultured
11.
J Mol Diagn ; 26(4): 304-309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301867

ABSTRACT

The utility of the next-generation sequencing (NGS) panel could be increased in hereditary peripheral neuropathies, given that the duplication of PMP22 is a major abnormality. In the present study, the analytical performance of an algorithm for detecting PMP22 copy number variation (CNV) from the NGS panel data was evaluated. The NGS panel covers 141 genes, including PMP22 and five genes within 1.5-megabase duplicated region at 17p11.2. CNV calling was performed using a laboratory-developed algorithm. Among the 92 cases subjected to targeted NGS panel from March 2018 to January 2021, 26 were suggestive of PMP22 CNV. Multiplex ligation-dependent probe amplification analysis was performed in 58 cases, and the results were 100% concordant with the NGS data (23 duplications, 2 deletions, and 33 negatives). Analytical performance of the pipeline was further validated by another blind data set, including 14 positive and 20 negative samples. Reliable detection of PMP22 CNV was possible by analyzing not only PMP22 but also the adjacent genes within the 1.5-megabase region of 17p11.2. On the basis of the high accuracy of CNV calling for PMP22, the testing strategy for diagnosis of peripheral polyneuropathies could be simplified by reducing the need for multiplex ligation-dependent probe amplification.


Subject(s)
Peripheral Nervous System Diseases , Humans , Peripheral Nervous System Diseases/genetics , DNA Copy Number Variations/genetics , Reproducibility of Results , Genetic Testing/methods , Myelin Proteins/genetics
12.
Biochem Biophys Res Commun ; 704: 149700, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38401304

ABSTRACT

Every year, the overprescription, misuse, and improper disposal of antibiotics have led to the rampant development of drug-resistant pathogens and, in turn, a significant increase in the number of patients who die of drug-resistant fungal infections. Recently, researchers have begun investigating the use of antimicrobial peptides (AMPs) as next-generation antifungal agents to inhibit the growth of drug-resistant fungi. The antifungal activity of alpha-helical peptides designed using the cationic amino acids containing lysine and arginine and the hydrophobic amino acids containing isoleucine and tryptophan were evaluated using 10 yeast and mold fungi. Among these peptides, WIK-14, which is composed of a 14-mer with tryptophan sequences at the amino terminus, showed the best antifungal activity via transient pore formation and ROS generation. In addition, the in vivo antifungal effects of WIK-14 were investigated in a mouse model infected with drug-resistant Candida albicans. The results demonstrate the potential of AMPs as antifungal agents.


Subject(s)
Antifungal Agents , Tryptophan , Mice , Animals , Humans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Tryptophan/chemistry , Lysine/chemistry , Antimicrobial Peptides , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Amino Acids/pharmacology , Candida albicans , Arginine/chemistry , Microbial Sensitivity Tests
13.
Mol Cancer Ther ; 23(5): 662-671, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38224566

ABSTRACT

Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27). In clonogenic survival assays, peposertib augmented radiation-induced killing of M12 cells at concentrations ≥100 nmol/L, and a minimum of 16 hours exposure allowed maximal sensitization. This information was integrated with pharmacokinetic modeling to define an optimal dosing regimen for peposertib of 125 mpk dosed just prior to and 7 hours after irradiation. Using this drug dosing regimen in combination with 2.5 Gy × 5 fractions of radiation, significant prolongation in median survival was observed in M12-eGFP (104%; P = 0.0015) and M15 (50%; P = 0.03), while more limited effects were seen in M27 (16%, P = 0.04). These data support the concept of developing peposertib as a radiosensitizer for brain metastases and provide a paradigm for integrating in vitro and pharmacokinetic data to define an optimal radiosensitizing regimen for potent DNA repair inhibitors.


Subject(s)
Brain Neoplasms , DNA-Activated Protein Kinase , Melanoma , Radiation-Sensitizing Agents , Xenograft Model Antitumor Assays , Animals , Humans , Brain Neoplasms/secondary , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Mice , DNA-Activated Protein Kinase/antagonists & inhibitors , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/pharmacokinetics , Radiation-Sensitizing Agents/therapeutic use , Melanoma/drug therapy , Melanoma/pathology , Cell Line, Tumor , Sulfones/pharmacology , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use
14.
J Hum Genet ; 69(3-4): 159-162, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38212463

ABSTRACT

Missense mutations in the alpha-B crystallin gene (CRYAB) have been reported in desmin-related myopathies with or without cardiomyopathy and have also been reported in families with only a cataract phenotype. Dilated cardiomyopathy (DCM) is a disorder with a highly heterogeneous genetic etiology involving more than 60 causative genes, hindering genetic diagnosis. In this study, we performed whole genome sequencing on 159 unrelated patients with DCM and identified an unusual stop-loss pathogenic variant in NM_001289808.2:c.527A>G of CRYAB in one patient. The mutant alpha-B crystallin protein is predicted to have an extended strand with addition of 19 amino acid residues, p.(Ter176TrpextTer19), which may contribute to aggregation and increased hydrophobicity of alpha-B crystallin. The proband, diagnosed with DCM at age 32, had a history of bilateral congenital cataracts but had no evidence of myopathy or associated symptoms. He also has a 10-year-old child diagnosed with bilateral congenital cataracts with the same CRYAB variant. This study expands the mutational spectrum of CRYAB and deepens our understanding of the complex phenotypes of alpha-B crystallinopathies.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Cataract , Muscular Diseases , Male , Child , Humans , Adult , Cardiomyopathy, Dilated/genetics , Mutation , Cataract/genetics , Phenotype , Pedigree , alpha-Crystallin B Chain/genetics
15.
J Clin Lab Anal ; 38(1-2): e25009, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38234087

ABSTRACT

BACKGROUND: Marfan syndrome (MFS), caused by pathogenic variants of FBN1 (fibrillin-1), is a systemic connective tissue disorder with variable phenotypes and treatment responsiveness depending on the variant. However, a significant number of individuals with MFS remain genetically unexplained. In this study, we report novel pathogenic intronic variants in FBN1 in two unrelated families with MFS. METHODS: We evaluated subjects with suspected MFS from two unrelated families using Sanger sequencing or multiplex ligation-dependent probe amplification of FBN1 and/or panel-based next-generation sequencing. As no pathogenic variants were identified, whole-genome sequencing was performed. Identified variants were analyzed by reverse transcription-PCR and targeted sequencing of FBN1 mRNA harvested from peripheral blood or skin fibroblasts obtained from affected probands. RESULTS: We found causative deep intronic variants, c.6163+1484A>T and c.5788+36C>A, in FBN1. The splicing analysis revealed an insertion of in-frame or out-of-frame intronic sequences of the FBN1 transcript predicted to alter function of calcium-binding epidermal growth factor protein domain. Family members carrying c.6163+1484A>T had high systemic scores including prominent skeletal features and aortic dissection with lesser aortic dilatation. Family members carrying c.5788+36C>A had more severe aortic root dilatation without aortic dissection. Both families had ectopia lentis. CONCLUSION: Variable penetrance of the phenotype and negative genetic testing in MFS families should raise the possibility of deep intronic FBN1 variants and the need for additional molecular studies. This study expands the mutation spectrum of FBN1 and points out the importance of intronic sequence analysis and the need for integrative functional studies in MFS diagnosis.


Subject(s)
Aortic Diseases , Aortic Dissection , Marfan Syndrome , Humans , Fibrillin-1/genetics , Mutation/genetics , Marfan Syndrome/genetics , Marfan Syndrome/complications , Marfan Syndrome/diagnosis , Genetic Testing , Adipokines/genetics
16.
Phytomedicine ; 124: 155301, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181531

ABSTRACT

BACKGROUND: Despite the notable pharmacological potential of natural ginsenosides, their industrial application is hindered by low oral bioavailability. Recent research centers on the production of less-glycosylated minor ginsenosides. PURPOSE: This study aimed to explore the effect of a biologically synthesized ginsenoside CK-rich minor ginsenoside complex (AceCK40), on ameliorating colitis using DSS-induced colitis models in vitro and in vivo. METHODS: The ginsenoside composition of AceCK40 was determined by HPLC-ELSD and UHPLC-MS/MS analyses. In vitro colitis model was established using dextran sodium sulfate (DSS)-induced Caco-2 intestinal epithelial model. For in vivo experiments, DSS-induced severe colitis mouse model was established. RESULTS: In DSS-stimulated Caco-2 cells, AceCK40 downregulated mitogen-activated protein kinase (MAPK) activation (p < 0.05), inhibited monocyte chemoattractant protein-1 (MCP-1) production (p < 0.05), and enhanced MUC2 expression (p < 0.05), mediated via signaling pathway regulation. Daily AceCK40 administration at doses of 10 and 30 mg/kg/day was well tolerated by DSS-induced severe colitis mice. These doses led to significant alleviation of disease activity index score (> 36.0% decrease, p < 0.05), increased luminal immunoglobulin (Ig)G (> 37.6% increase, p < 0.001) and IgA (> 33.8% increase, p < 0.001), lowered interleukin (IL)-6 (> 65.7% decrease, p < 0.01) and MCP-1 (> 116.2% decrease, p < 0.05), as well as elevated serum IgA (> 51.4% increase, p < 0.001) and lowered serum IL-6 (112.3% decrease at 30 mg/kg, p < 0.001). Hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS) staining revealed that DSS-mediated thickening of the muscular externa, extensive submucosal edema, crypt distortion, and decreased mucin droplets were significantly alleviated by AceCK40 administration. Additionally, daily administration of AceCK40 led to significant recovery of colonic tight junctions damaged by DSS through the elevation in the expression of adhesion molecules, including occludin, E-cadherin, and N-cadherin. CONCLUSION: This study presents the initial evidence elucidating the anti-colitis effects of AceCK40 and its underlying mechanism of action through sequential in vitro and in vivo systems employing DSS stimulation. Our findings provide valuable fundamental data for the utilization of AceCK40 in the development of novel anti-colitis candidates.


Subject(s)
Colitis , Ginsenosides , Humans , Mice , Animals , Ginsenosides/metabolism , Caco-2 Cells , Mice, Inbred C57BL , Tandem Mass Spectrometry , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon , Immunoglobulin A/metabolism , Immunoglobulin A/pharmacology , Immunoglobulin A/therapeutic use , Dextran Sulfate/adverse effects , Disease Models, Animal , Intestinal Mucosa/metabolism
17.
Cancer Res Treat ; 56(1): 27-36, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37680123

ABSTRACT

PURPOSE: In the modern era of precision medicine, next-generation sequencing (NGS) is employed for a variety of clinical purposes. The aim of this study was to investigate the trends and clinical characteristics of NGS testing in South Korea. MATERIALS AND METHODS: This nationwide, population-based, retrospective cohort study examined National Health Insurance Service claims data from 2017 to 2021 for NGS and from 2008 to 2021 for gene-targeted anticancer drugs. RESULTS: Among the total 98,748 claims, there were 51,407 (52.1%) solid cancer panels, 30,173 (30.5%) hereditary disease panels, and 17,168 (17.4%) hematolymphoid cancer panels. The number of annual claims showed a persistent upward trend, exhibiting a 5.4-fold increase, from 5,436 in 2017 to 29,557 in 2021. In the solid cancer panel, colorectal cancer was the most common (19.2%), followed by lung cancer (18.8%). The annual claims for targeted cancer drugs have increased 25.7-fold, from 3,932 in 2008 to 101,211 in 2020. Drugs for the treatment of lung cancer accounted for 488,819 (71.9%) claims. The number of patients who received non-hereditary NGS testing has substantially increased, and among them, the count of patients prescribed targeted anticancer drugs consistently rose from 508 (13.9%) in 2017 to 2,245 (12.3%) in 2020. CONCLUSION: This study highlights the rising nationwide demand for comprehensive genetic testing for disease diagnosis and treatment following NGS reimbursement by the National Health Insurance in South Korea, in addition to the need for greater utilization of targeted anticancer drugs.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Humans , Retrospective Studies , Lung Neoplasms/drug therapy , Genetic Testing , Antineoplastic Agents/therapeutic use , High-Throughput Nucleotide Sequencing
18.
19.
Aging Cell ; 23(3): e14061, 2024 03.
Article in English | MEDLINE | ID: mdl-38105557

ABSTRACT

Once tooth development is complete, odontoblasts and their progenitor cells in the dental pulp play a major role in protecting tooth vitality from external stresses. Hence, understanding the homeostasis of the mature pulp populations is just as crucial as understanding that of the young, developing ones for managing age-related dentinal damage. Here, it is shown that loss of Cpne7 accelerates cellular senescence in odontoblasts due to oxidative stress and DNA damage accumulation. Thus, in Cpne7-null dental pulp, odontoblast survival is impaired, and aberrant dentin is extensively formed. Intraperitoneal or topical application of CPNE7-derived functional peptide, however, alleviates the DNA damage accumulation and rescues the pathologic dentin phenotype. Notably, a healthy dentin-pulp complex lined with metabolically active odontoblasts is observed in 23-month-old Cpne7-overexpressing transgenic mice. Furthermore, physiologic dentin was regenerated in artificial dentinal defects of Cpne7-overexpressing transgenic mice. Taken together, Cpne7 is indispensable for the maintenance and homeostasis of odontoblasts, while promoting odontoblastic differentiation of the progenitor cells. This research thereby introduces its potential in oral disease-targeted applications, especially age-related dental diseases involving dentinal loss.


Subject(s)
Aging, Premature , Mice , Animals , Dental Pulp , Cellular Senescence/genetics , Odontoblasts , Cell Differentiation/genetics , Mice, Transgenic
20.
Comput Biol Med ; 169: 107875, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154163

ABSTRACT

Accurate detection and classification of white blood cells, otherwise known as leukocytes, play a critical role in diagnosing and monitoring various illnesses. However, conventional methods, such as manual classification by trained professionals, must be revised in terms of accuracy, efficiency, and potential bias. Moreover, applying deep learning techniques to detect and classify white blood cells using microscopic images is challenging owing to limited data, resolution noise, irregular shapes, and varying colors from different sources. This study presents a novel approach integrating object detection and classification for numerous type-white blood cell. We designed a 2-way approach to use two types of images: WBC and nucleus. YOLO (fast object detection) and ViT (powerful image representation capabilities) are effectively integrated into 16 classes. The proposed model demonstrates an exceptional 96.449% accuracy rate in classification.


Subject(s)
Image Interpretation, Computer-Assisted , Leukocytes , Deep Learning , Microscopy
SELECTION OF CITATIONS
SEARCH DETAIL