Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
Int J Phytoremediation ; 25(9): 1155-1164, 2023.
Article in English | MEDLINE | ID: mdl-36355569

ABSTRACT

In this study, we explored the potential of a newly prepared nano-zero valent zinc (nZVZn), biochar (BC)/nZVZn and BC/hydroxyapatite-alginate (BC/HA-alginate) composites for the removal of inorganic As species from water. Relatively, higher percentage removal of As(III) and As(V) was obtained by nZVZn at pH 3.4 (96% and 94%, respectively) compared to BC/nZVZn (90% and 88%) and BC/HA-alginate (88% and 80%) at pH 7.2. Freundlich model provided the best fit (R2 = up to 0.98) for As(III) and As(V) sorption data of all the sorbents, notably for nZVZn. The pseudo-second order model well-described kinetics of As(III) and As(V) (R2 = 0.99) sorption on all the sorbents. The desorption experiments demonstrated that the As removal efficiency, up to the third sorption/desorption cycle, was in the order of nZVZn ∼ BC/HA-alginate (88%) > BC/nZVZn (84%). The Fourier transform infrared spectroscopy depicted that the -OH, -COOH, Zn-O and Zn-OH surface functional groups were responsible for the sorption of As(III) or As(V) on the sorbents investigated here. This study highlights that removal of As species from water by BC/nZVZn composite can be compared with nZVZn, suggesting that integrating BC with nZVZn could efficiently remove As from As-contaminated drinking water.


This is the first study to explore the potential of a newly prepared sugarcane bagasse biochar/nano-zerovalent zinc (BC/nZVZn) based composite for the removal of inorganic arsenic (As) species from water. The results indicated high percentage removal of As(III) and As(V) from water by BC/nZVZn that were comparable to nZVZn alone.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Zinc , Water Pollutants, Chemical/chemistry , Adsorption , Water Purification/methods , Biodegradation, Environmental , Charcoal/chemistry , Water , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL