Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Language
Publication year range
1.
Nanoscale ; 14(38): 14106-14112, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36070461

ABSTRACT

Transition metal dichalcogenides (TMDs) have been considered as promising candidates for transparent and flexible optoelectronic devices owing to their large exciton binding energy and strong light-matter interaction. However, monolayer (1L) TMDs exhibited different intensities and spectra of photoluminescence (PL), and the characteristics of their electronic devices also differed in each study. This has been explained in terms of various defects in TMDs, such as vacancies and grain boundaries, and their surroundings, such as dielectric screening and charged impurities, which lead to non-radiative recombination of trions, low quantum yield (QY), and unexpected doping. However, it should be noted that the surface conditions of the substrate are also a critical factor in determining the properties of TMDs located on the substrate. Here, we demonstrate that the optical and electrical properties of 1L MoS2 are strongly influenced by the functionalized substrate. The PL of 1L MoS2 placed on the oxygen plasma-treated SiO2 substrate was highly p-doped owing to the functional groups of -OH on SiO2, resulting in a strong enhancement of PL by approximately 20 times. The PL QY of 1L MoS2 on plasma-treated SiO2 substrate increased by one order of magnitude. Surprisingly, the observed PL spectra show the suppression of non-radiative recombination by trions, thus the exciton-dominant PL led to a prolonged lifetime of MoS2 on the plasma-treated substrate. The MoS2 field-effect transistors fabricated on plasma-treated SiO2 also exhibited a large hysteresis in the transfer curve owing to charge trapping of the functional groups. Our study demonstrates that the functional groups on the substrate strongly affect the characteristics of 1L MoS2, which provides clues as to why MoS2 exfoliated on various substrates always exhibited different properties in previous studies.

2.
Nanoscale Adv ; 4(4): 1191-1198, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-36131764

ABSTRACT

Transition metal dichalcogenides (TMDs) are promising candidates for the semiconductor industry owing to their superior electrical properties. Their surface oxidation is of interest because their electrical properties can be easily modulated by an oxidized layer on top of them. Here, we demonstrate the XeF2-mediated surface oxidation of 2H-MoTe2 (alpha phase MoTe2). MoTe2 exposed to XeF2 gas forms a thin and uniform oxidized layer (∼2.5 nm-thick MoO x ) on MoTe2 regardless of the exposure time (within ∼120 s) due to the passivation effect and simultaneous etching. We used the oxidized layer for contacts between the metal and MoTe2, which help reduce the contact resistance by overcoming the Fermi level pinning effect by the direct metal deposition process. The MoTe2 field-effect transistors (FETs) with a MoO x interlayer exhibited two orders of magnitude higher field-effect hole mobility of 6.31 cm2 V-1 s-1 with a high on/off current ratio of ∼105 than that of the MoTe2 device with conventional metal contacts (0.07 cm2 V-1 s-1). Our work shows a straightforward and effective method for forming a thin oxide layer for MoTe2 devices, applicable for 2D electronics.

3.
Nano Lett ; 21(2): 891-898, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33079559

ABSTRACT

While many technologies rely on multilayer heterostructures, most of the studies on chemical functionalization have been limited to monolayer graphene. In order to use functionalization in multilayer systems, we must first understand the interlayer interactions between functionalized and nonfunctionalized (intact) layers and how to selectively functionalize one layer at a time. Here, we demonstrate a method to fabricate single- or double-sided fluorinated bilayer graphene (FBG) by tailoring substrate interactions. Both the top and bottom surfaces of bilayer graphene on the rough silicon dioxide (SiO2) are fluorinated; meanwhile, only the top surface of graphene on hexagonal boron nitride (hBN) is fluorinated. The functionalization type affects electronic properties; double-sided FBG on SiO2 is insulating, whereas single-sided FBG on hBN maintains conducting, showing that the intact bottom layer becomes electrically decoupled from the fluorinated top insulating layer. Our results define a straightforward method to selectively functionalize the top and bottom surfaces of bilayer graphene.

4.
Nano Lett ; 19(11): 7598-7607, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31244238

ABSTRACT

Two-dimensional transition-metal dichalcogenide (2D TMD) layers are highly attractive for emerging stretchable and foldable electronics owing to their extremely small thickness coupled with extraordinary electrical and optical properties. Although intrinsically large strain limits are projected in them (i.e., several times greater than silicon), integrating 2D TMDs in their pristine forms does not realize superior mechanical tolerance greatly demanded in high-end stretchable and foldable devices of unconventional form factors. In this article, we report a versatile and rational strategy to convert 2D TMDs of limited mechanical tolerance to tailored 3D structures with extremely large mechanical stretchability accompanying well-preserved electrical integrity and modulated transport properties. We employed a concept of strain engineering inspired by an ancient paper-cutting art, known as kirigami patterning, and developed 2D TMD-based kirigami electrical conductors. Specifically, we directly integrated 2D platinum diselenide (2D PtSe2) layers of controlled carrier transport characteristics on mechanically flexible polyimide (PI) substrates by taking advantage of their low synthesis temperature. The metallic 2D PtSe2/PI kirigami patterns of optimized dimensions exhibit an extremely large stretchability of ∼2000% without compromising their intrinsic electrical conductance. They also present strain-tunable and reversible photoresponsiveness when interfaced with semiconducting carbon nanotubes (CNTs), benefiting from the formation of 2D PtSe2/CNT Schottky junctions. Moreover, kirigami field-effect transistors (FETs) employing semiconducting 2D PtSe2 layers exhibit tunable gate responses coupled with mechanical stretching upon electrolyte gating. The exclusive role of the kirigami pattern parameters in the resulting mechanoelectrical responses was also verified by a finite-element modeling (FEM) simulation. These multifunctional 2D materials in unconventional yet tailored 3D forms are believed to offer vast opportunities for emerging electronics and optoelectronics.

5.
ACS Appl Mater Interfaces ; 11(14): 13598-13607, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30854845

ABSTRACT

Two-dimensional (2D) transition-metal dichalcogenides (2D TMDs) in the form of MX2 (M: transition metal, X: chalcogen) exhibit intrinsically anisotropic layered crystallinity wherein their material properties are determined by constituting M and X elements. 2D platinum diselenide (2D PtSe2) is a relatively unexplored class of 2D TMDs with noble-metal Pt as M, offering distinct advantages over conventional 2D TMDs such as higher carrier mobility and lower growth temperatures. Despite the projected promise, much of its fundamental structural and electrical properties and their interrelation have not been clarified, and so its full technological potential remains mostly unexplored. In this work, we investigate the structural evolution of large-area chemical vapor deposition (CVD)-grown 2D PtSe2 layers of tailored morphology and clarify its influence on resulting electrical properties. Specifically, we unveil the coupled transition of structural-electrical properties in 2D PtSe2 layers grown at a low temperature (i.e., 400 °C). The layer orientation of 2D PtSe2 grown by the CVD selenization of seed Pt films exhibits horizontal-to-vertical transition with increasing Pt thickness. While vertically aligned 2D PtSe2 layers present metallic transports, field-effect-transistor gate responses were observed with thin horizontally aligned 2D PtSe2 layers prepared with Pt of small thickness. Density functional theory calculation identifies the electronic structures of 2D PtSe2 layers undergoing the transition of horizontal-to-vertical layer orientation, further confirming the presence of this uniquely coupled structural-electrical transition. The advantage of low-temperature growth was further demonstrated by directly growing 2D PtSe2 layers of controlled orientation on polyimide polymeric substrates and fabricating their Kirigami structures, further strengthening the application potential of this material. Discussions on the growth mechanism behind the horizontal-to-vertical 2D layer transition are also presented.

6.
Sci Rep ; 7(1): 14944, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097721

ABSTRACT

Two-dimensional molybdenum disulfide (2D MoS2) presents extraordinary optical, electrical, and chemical properties which are highly tunable by engineering the orientation of constituent 2D layers. 2D MoS2 films with vertically-aligned layers exhibit numerous 2D edge sites which are predicted to offer superior chemical reactivity owing to their enriched dangling bonds. This enhanced chemical reactivity coupled with their tunable band gap energy can render the vertical 2D MoS2 unique opportunities for environmental applications that go beyond the conventional applications of horizontal 2D MoS2 in electronics/opto-electronics. Herein, we report that MoS2 films with vertically-aligned 2D layers exhibit excellent visible light responsive photocatalytic activities for efficiently degrading organic compounds in contaminated water such as harmful algal blooms. We demonstrate the visible light-driven rapid degradation of microcystin-LR, one of the most toxic compounds produced by the algal blooms, and reveal that the degradation efficiency can be significantly improved by incorporating noble metals. This study suggests a high promise of these emerging 2D materials for water treatment, significantly broadening their versatility for a wide range of energy and environmental applications.

SELECTION OF CITATIONS
SEARCH DETAIL