Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37961814

ABSTRACT

BACKGROUND: Continuous exposure of the skin to ultraviolet B (UVB) rays can cause inflammation and photodamage. In previous studies, we observed that the upregulation of nc886, a noncoding RNA (ncRNA), can alleviate UVB-induced inflammation through suppression of the protein kinase RNA (PKR) pathway. We aim to investigate the effect of fermented black ginseng extract (FBGE), which has been shown to increase the expression of nc886, on UVB-induced inflammation in keratinocytes. METHODS: To confirm the cytotoxicity of FBGE, MTT assay was performed, and no significant cytotoxicity was found on human keratinocytes. The efficacies of FBGE were assessed through qPCR, Western blotting, and ELISA analysis which confirmed regulation of UVB-induced inflammation. RESULTS: The analysis results showed that FBGE inhibited the decrease in nc886 expression and the increase in the methylated nc886 caused by UVB. It also prevented the UVB-induced increase of metalloproteinase-9 (MMP-9), metalloproteinase-1 (MMP-1), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α). Additionally, FBGE suppressed the PKR-MAPK pathways activated by UVB. CONCLUSION: These results implicate that FBGE can alleviate UVB-induced inflammation through regulation of the nc886-PKR pathway.


Subject(s)
Keratinocytes , Panax , Humans , Keratinocytes/metabolism , Skin , Inflammation/metabolism , Metalloproteases/metabolism , Metalloproteases/pharmacology , Ultraviolet Rays/adverse effects
2.
Am J Chin Med ; 46(2): 423-433, 2018.
Article in English | MEDLINE | ID: mdl-29433388

ABSTRACT

Eucalyptus globulus Labill. (E. globulus, Myrtaceae) is used in Europe as a traditional folk remedy for inflammation-related disorders such as arthritis, diabetes, asthma, and gout. We investigated this study to evaluate the protective effects of E. globulus extract (EG) on inflammatory responses, and provide scientific and mechanistic evidence in in vitro and in vivo experimental models. LPS-stimulated murine bone marrow-derived macrophages (BMDMs) were used to study the regulatory effect of EG on inflammasome activation in vitro. Monosodium urate (MSU)-induced peritonitis was used to study the effect of EG in an in vivo murine model. EG suppressed IL-[Formula: see text] secretion via the regulation of apoptosis-associated speck-like proteins containing a CARD (ASC) oligomerization and caspase-1 maturation, leading to the inhibition of inflammasome activation. In the in vivo study, EG suppressed the MSU-induced peritonitis by attenuating interleukin (IL)-1[Formula: see text], providing scientific support for its traditional use in the treatment of inflammation-related disorders.


Subject(s)
Eucalyptus/chemistry , Inflammasomes/metabolism , Inflammation/drug therapy , Macrophages/drug effects , Peritonitis/drug therapy , Peritonitis/etiology , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Uric Acid/adverse effects , Animals , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/metabolism , Cells, Cultured , Disease Models, Animal , Female , Inflammation/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/adverse effects , Mice, Inbred C57BL
3.
J Med Food ; 19(3): 310-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26987023

ABSTRACT

This study provides the scientific basis for the inhibitory effect of the aerial parts of Cichorium intybus Linn. (C. intybus) on the activation of the NLRP3 inflammasome in vitro and on high-fat diet (HFD)-induced type-2 diabetes (T2D). Lipopolysaccharide (LPS)-primed bone marrow-derived macrophages were used to study the effects methanolic extract of C. intybus leaf (CI) on inflammasome activation. An insulin resistance model (mice fed a HFD) was used to study the in vivo effect of CI on T2D. CI attenuated interleukin-1ß (IL-1ß) secretion by inhibiting the activation of the NLRP3 inflammasome in mouse bone marrow macrophages. The CI treatment attenuated the intracellular movement of NLRP3 in Triton X-100 insoluble fraction, without affecting the expression of other NLRP3 inflammasome-related proteins. Attenuated IL-1ß secretion may improve glucose metabolism in the HFD-fed insulin resistance mouse model. CI also attenuated the infiltration of M1 macrophages and increased the M2 macrophage population in white adipose tissue. Collectively, our data showed that CI inhibits IL-1ß secretion through attenuation of NLRP3 inflammasome activation, leading to an antidiabetic effect by improving glucose metabolism and inhibiting metainflammation.


Subject(s)
Cichorium intybus/chemistry , Diabetes Mellitus, Type 2/prevention & control , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Plant Extracts/administration & dosage , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/immunology , Down-Regulation/drug effects , Humans , Inflammasomes/genetics , Inflammasomes/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/immunology
4.
Toxicol Appl Pharmacol ; 284(2): 227-35, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25689174

ABSTRACT

Melatonin is substantially reported to possess anti-inflammatory properties. In the present study, we synthesized a novel melatonin derivative, 5-hydroxy-2'-isobutyl-streptochlorin (HIS), which displayed superior anti-inflammatory properties to its parent compound. Further, we explored its underlying mechanisms in cellular and experimental animal models. Lipopolysaccharide was used to induce in vitro inflammatory responses in RAW 264.7 macrophages. LPS-primed macrophages were pulsed with biologically unrelated toxic molecules to evaluate the role of HIS on inflammasome activation. In vivo verifications were carried out using acute lung injury (ALI) and Escherichia coli-induced septic shock mouse models. HIS inhibited the production of proinflammatory mediators and cytokines such as nitric oxide, cyclooxygenase 2, IL-1ß, IL-6 and TNF-α in LPS-stimulated RAW 264.7 macrophages. HIS suppressed the infiltration of immune cells into the lung and the production of pro-inflammatory cytokines such as IL-6 and TNF-α in broncho-alveolar lavage fluid in the ALI mouse model. Mechanistic studies revealed that the inhibitory effects of HIS were mediated through the regulation of the TIR domain-containing, adaptor-inducing, interferon-ß (TRIF)-dependent signaling pathway from toll-like receptors. Further, HIS attenuated IL-1ß secretion via the inhibition of NLRP3 inflammasome activation independent of mitochondrial ROS production. Furthermore, HIS suppressed IL-1ß, IL-6 and interferon-ß production in peritoneal lavage in the Escherichia coli-induced sepsis mouse model. In conclusion, HIS exerted potent anti-inflammatory effects via the regulation of TRIF-dependent signaling and inflammasome activation. Notably, the superior anti-inflammatory properties of this derivative compared with its parent compound could be a promising lead for treating various inflammatory-mediated diseases.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Anti-Inflammatory Agents/pharmacology , Indoles/pharmacology , Inflammasomes/drug effects , Inflammation/drug therapy , Melatonin/analogs & derivatives , Melatonin/pharmacology , Oxazoles/pharmacology , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Animals , Cell Line , Cyclooxygenase 2/metabolism , Disease Models, Animal , Female , Inflammasomes/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Nitric Oxide/metabolism , Random Allocation , Reactive Oxygen Species/metabolism , Shock, Septic/drug therapy , Shock, Septic/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism
5.
Eur J Pharmacol ; 723: 501-6, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24239713

ABSTRACT

Mast cells are known to play a pivotal role in allergic diseases. Cross-linking of the high-affinity IgE receptor (FcεRI) is known to be one of the major causes that lead to degranulation and allergic inflammation. An increase in intracellular calcium (Ca(2+)) concentration also triggers degranulation, bypassing receptor activation. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is known to exhibit a variety of pharmacological activities including anti-allergic effects. However, the detailed molecular mechanisms involved in exhibiting anti-allergic effects by emodin were remained to be clarified. In the present investigation we report the regulatory function of emodin on the allergic signal mediators through Ca(2+) ionophore activation in mast cells. Emodin significantly inhibited A23187-induced tumor necrosis factor-α production and degranulation through the attenuation of protein kinase C, IκB kinase 2, and soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptor complex formation, bypassing FcεRI activation. Data from our study indicated that emodin acts by regulating multiple signaling pathways in inhibiting the allergic reactions in mast cells.


Subject(s)
Cell Degranulation/drug effects , Emodin/pharmacology , Mast Cells/drug effects , Animals , Bone Marrow Cells/cytology , Calcimycin/pharmacology , Calcium/metabolism , Cell Line, Tumor , Cells, Cultured , Female , I-kappa B Kinase/metabolism , Interleukin-4/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mast Cells/physiology , Mice , Mice, Inbred C57BL , Protein Kinase C/metabolism , Protein-Tyrosine Kinases/metabolism , Qb-SNARE Proteins/metabolism , Qc-SNARE Proteins/metabolism , Rats , Receptors, IgE/metabolism , SNARE Proteins/metabolism , Signal Transduction/drug effects , Syk Kinase , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL