Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 335
Filter
1.
Int J Biol Macromol ; 280(Pt 2): 135817, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306157

ABSTRACT

Eimeria tenella is the major causative agent of chicken coccidiosis. 5-Methylcytosine (m5C) is a type of RNA chemical modifications reported to regulate diverse biological processes. However, the distribution and biological functions of m5C in E. tenella mRNAs are yet to be known. Herein, we report transcriptome-wide profiling of mRNA m5C in E. tenella by employing m5C RNA immunoprecipitation followed by a deep-sequencing approach (m5C-RIP-seq). Our data showed that m5C peaks were distributed across the whole mRNA body. Compared with unsporulated oocysts, there were 2813 hypermethylated and 1850 hypomethylated m5C peaks in sporulated oocysts. Generally, a positive correlation between m5C modification and gene expression levels was observed. The mRNA sequencing (RNA-seq) and m5C-RIP-seq data were consistent with the results of the quantitative reverse transcription PCR (RT-qPCR) and methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR), respectively. Gene Ontology (GO) and pathway enrichment analysis predicated diverse biological functions and pathways, including microtubule motor activity, helicase activity, cGMP-PKG signaling pathway, aminoacyl-tRNA biosynthesis, glycolysis/gluconeogenesis, and spliceosome. Meanwhile, stage-specific gene expression signatures of m5C-related regulators were observed. Altogether, our findings reveal the transcriptional significance of m5C modification in E. tenella oocysts, providing resources and clues for further in-depth research.

2.
J Thorac Oncol ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306192

ABSTRACT

INTRODUCTION: An increasing number of early-stage lung adenocarcinoma (LUAD) are detected as lung nodules. The radiological features related to LUAD progression remain further investigation. Exploration is required to bridge the gap between radiomics features and molecular characteristics of lung nodules. METHODS: Consensus clustering was applied to the radiomics features of 1,212 patients to establish stable clustering. Clusters were illustrated using clinicopathological and next-generation sequencing (NGS). A classifier was constructed to further investigate the molecular characteristic in patients with paired CT and RNA-seq data. RESULTS: Patients were clustered into 4 clusters. Cluster 1 was associated with a low consolidation-to-tumor ratio (CTR), pre-invasion, grade I disease and good prognosis. Clusters 2 and 3 showed increasing malignancy with higher CTR, higher pathological grade and poor prognosis. Cluster 2 possessed more spread through air spaces (STAS) and cluster 3 showed higher proportion of pleural invasion. Cluster 4 had similar clinicopathological features with cluster 1 except higher proportion of grade II disease. RNA-seq indicated that cluster 1 represented nodules with indolent growth and good differentiation, whereas cluster 4 showed progression in cell development but still had low proliferative activity. Nodules with high proliferation were classified into clusters 2 and 3. Additionally, the radiomics classifier distinguished cluster 2 as nodules harboring an activated immune environment, while cluster 3 represented nodules with a suppressive immune environment. Furthermore, gene signatures associated with the prognosis of early-stage LUAD were validated in external datasets. CONCLUSION: Radiomics features can manifest molecular events driving progression of lung adenocarcinoma. Our study provides a molecular insight into radiomics features and assists in the diagnosis and treatment of early stage LUAD.

3.
Cancer Med ; 13(16): e70178, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39219182

ABSTRACT

BACKGROUND: Lymphoma is the most common secondary cause of hemophagocytic lymphohistiocytosis (HLH) in adults. Lymphoma-associated HLH (LA-HLH) in the elderly population is not rare, however, little has been reported regarding clinicopathological characteristics, prognostic factors, and outcomes of LA-HLH in the elderly population. METHODS: We retrospectively analyzed a multicenter cohort of elderly patients with LA-HLH. Clinicopathological features and treatment information were collected. The impacts of baseline characteristics and treatments on survival outcomes were analyzed. RESULTS: A total of 173 elderly patients with LA-HLH were included. Compared with young patients, elderly patients showed different clinical and laboratory features. Regarding lymphoma subtypes, B-cell lymphoma was more common in elderly patients (elderly 61.3% vs. young 32.3%, p < 0.001) while T/NK-cell lymphoma was more common in young patients (65.3% vs. 35.3%, p < 0.001). The median survival of elderly patients with LA-HLH was only 92 days. The prior use of HLH therapy or etoposide-containing HLH therapy was not associated with improved overall survival. T/NK-cell subtype, a lower platelet count (≤53 × 109/L), a lower albumin level (≤32.1 g/L), a higher LDH level (>1407 U/L), and a higher creatinine level (>96.8 µmol/L) were independent predictors of decreased overall survival and 60-day survival. A prognostic index was established and demonstrated to be robust in predicting the overall survival and 60-day survival of elderly patients with LA-HLH. CONCLUSIONS: LA-HLH in elderly patients displayed heterogeneous clinicopathological features and survival outcomes. Treatments need to be optimized to improve the outcomes of elderly patients with LA-HLH.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/mortality , Lymphohistiocytosis, Hemophagocytic/pathology , Lymphohistiocytosis, Hemophagocytic/diagnosis , Male , Female , Aged , Prognosis , Retrospective Studies , Aged, 80 and over , Middle Aged , Age Factors , Lymphoma/mortality , Lymphoma/complications , Lymphoma/pathology , Treatment Outcome
4.
Transl Androl Urol ; 13(8): 1416-1424, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39280681

ABSTRACT

Background: Urinary incontinence following prostate treatment (IPT) represents a significant complication that detrimentally impacts the quality of life for patients who have undergone prostate surgery. Presently, there is a scarcity of evidence regarding the preferred surgical techniques for IPT. We conducted a meta-analysis to compare the outcomes of the male sling and artificial urinary sphincter (AUS) in the treatment of IPT. Methods: Data were extracted through electronic literature searches on PubMed, Web of Science, and Embase databases until September 2023. Eligible studies included patients who underwent AUS or male sling procedures for IPT and had a follow-up duration exceeding 12 months. The primary end point was the success rate, with the secondary outcome focusing on complication rates. A fixed-effects or random-effects models were used to calculate the pooled estimate and its 95% confidence interval (CI). The publication bias was assessed using funnel plots and Egger's regression test. Results: The meta-analysis included nine studies, involving a total of 1,350 participants. No statistically significant difference in success rates was found between AUS and male sling [odds ratio (OR): 0.96, 95% CI: 0.91-1.01]. In terms of the complication rate, there was no significant disparity between the two procedures (OR: 0.87, 95% CI: 0.86-1.12). Conclusions: The findings from this study indicated that male sling surgery yielded success and complication rates comparable to those of AUS. This suggests that male sling could serve as a viable alternative surgical option in the treatment of IPT.

6.
J Environ Manage ; 367: 121979, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39088904

ABSTRACT

Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 µM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.


Subject(s)
Cadmium , Plant Growth Regulators , Transcription Factors , Transcriptome , Cadmium/toxicity , Cadmium/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptome/drug effects , Plant Growth Regulators/metabolism , Nicotiana/genetics , Nicotiana/drug effects , Stress, Physiological , Plant Roots/drug effects , Plant Roots/metabolism , Gene Expression Regulation, Plant/drug effects
7.
Immunol Lett ; 269: 106907, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39122094

ABSTRACT

The present study focused on the efficacy and role of triptolide (TPL) in relieving symptoms of acute gouty arthritis (AGA) in vivo and in vitro. The effects of TPL in AGA were investigated in monosodium urate (MSU)-treated rat ankles, RAW264.7 macrophages, and neutrophils isolated from mouse peritoneal cavity. Observation of pathological changes in the ankle joint of rats. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (RT-qPCR) were performed to detect the expression levels of inflammatory factors and chemokines. The levels of the indicators of macrophage M1/M2 polarization, and the mechanistic targets of Akt and rapamycin complex 2, were determined via western blotting and RT-qPCR. The expression levels of CD86 and CD206 were detected using immunohistochemistry. Neutrophil migration was observed via air pouch experiments in vivo and Transwell cell migration assay in vitro. Myeloperoxidase (MPO) and Neutrophil elastase (NE) release was analyzed by via immunohistochemistry and immunofluorescence. The expression levels of beclin-1, LC3B, Bax, Bcl-2, and cleaved caspase-3 in neutrophils were determined via western blotting and immunofluorescence. Neutrophil apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Our results suggest that TPL inhibited inflammatory cell infiltration in rat ankle joints and inflammatory factor and chemokine secretion in rat serum, regulated macrophage polarization through the PI3K/AKT signaling pathway, suppressed inflammatory factor and chemokine expression in neutrophils, and inhibited neutrophil migration, neutrophil extracellular trap formation, transitional autophagy, and apoptosis. This suggests that TPL can prevent and treat MSU-induced AGA by regulating macrophage polarization through the PI3K/Akt pathway and modulating neutrophil activity.


Subject(s)
Arthritis, Gouty , Diterpenes , Epoxy Compounds , Macrophages , Neutrophils , Phenanthrenes , Uric Acid , Animals , Diterpenes/pharmacology , Diterpenes/therapeutic use , Neutrophils/immunology , Neutrophils/drug effects , Neutrophils/metabolism , Rats , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Arthritis, Gouty/drug therapy , Arthritis, Gouty/chemically induced , Arthritis, Gouty/metabolism , Arthritis, Gouty/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Mice , Epoxy Compounds/pharmacology , Male , Disease Models, Animal , RAW 264.7 Cells , Signal Transduction/drug effects , Macrophage Activation/drug effects , Apoptosis/drug effects , Neutrophil Activation/drug effects , Humans , Rats, Sprague-Dawley , Cell Movement/drug effects
8.
J Med Chem ; 67(17): 15711-15737, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39169676

ABSTRACT

The NLRP3 inflammasome is a multiprotein complex that is a component of the innate immune system, involved in the production of pro-inflammatory cytokines. Its abnormal activation is associated with many inflammatory diseases. In this study, we designed and synthesized a series of NLRP3 inflammasome inhibitors based on pyridazine scaffolds. Among them, P33 exhibited significant inhibitory effects against nigericin-induced IL-1ß release in THP-1 cells, BMDMs, and PBMCs, with IC50 values of 2.7, 15.3, and 2.9 nM, respectively. Mechanism studies indicated that P33 directly binds to NLRP3 protein (KD = 17.5 nM), inhibiting NLRP3 inflammasome activation and pyroptosis by suppressing ASC oligomerization during NLRP3 assembly. Additionally, P33 displayed excellent pharmacokinetic properties, with an oral bioavailability of 62%. In vivo efficacy studies revealed that P33 significantly ameliorated LPS-induced septic shock and MSU crystal-induced peritonitis in mice. These results indicate that P33 has great potential for further development as a candidate for treating NLRP3 inflammasome-mediated diseases.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Peritonitis , Pyridazines , Shock, Septic , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Peritonitis/drug therapy , Animals , Shock, Septic/drug therapy , Humans , Inflammasomes/antagonists & inhibitors , Inflammasomes/metabolism , Mice , Pyridazines/chemistry , Pyridazines/pharmacology , Pyridazines/pharmacokinetics , Pyridazines/chemical synthesis , Pyridazines/therapeutic use , Administration, Oral , Male , Mice, Inbred C57BL , THP-1 Cells , Structure-Activity Relationship , Drug Discovery , Interleukin-1beta/metabolism , Interleukin-1beta/antagonists & inhibitors , Lipopolysaccharides/pharmacology
9.
Chem Sci ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39144464

ABSTRACT

Organic photothermal materials based on conjugated structures have significant potential applications in areas such as biomedical diagnosis, therapy, and energy conversion. Improving their photothermal conversion efficiency through molecular design is critical to promote their practical applications. Especially in similar structures, understanding how the position of heteroatoms affects the conversion efficiency is highly desirable. Herein, we prepared two isomeric small D-A molecules with different sulfur atom positions (TBP-MPA and i-TBP-MPA), which display strong and broad absorption in the UV-visible region due to their strong intramolecular charge transfer characteristics. Compared to i-TBP-MPA, TBP-MPA demonstrates aggregation-induced photothermal enhancement (AIPE). Under simulated sunlight (1 kW m-2) irradiation, the stable temperature of TBP-MPA powder reached 60 °C, significantly higher than the 50 °C achieved by i-TBP-MPA. Experimental and theoretical results indicate that the S⋯N non-covalent interactions in TBP-MPA impart a more rigid conjugated framework to the molecule, inducing ordered molecular stacking during aggregation. This ordered stacking provides additional non-radiative transition channels between TBP-MPA molecules, enhancing their photothermal performance in the aggregated state. Under 1 sun irradiation, TBP-MPA achieved a water evaporation rate of 1.0 kg m-2 h-1, surpassing i-TBP-MPA's rate of 0.92 kg m-2 h-1.

10.
Adv Mater ; : e2409212, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194393

ABSTRACT

Single-component organic solar cells based on double cable polymers have achieved remarkable performance, with DCPY2 reaching a high efficiency of over 13%. In this study, DCPY2 is further optimized with an efficiency of 13.85%, maintaining a high fill factor (FF) without compromising the short circuit current. Despite its intermixed morphology, DCPY2 shows a reduced recombination rate compared to their binary counterpart (PBDB-T:Y-O6). This slower recombination in DCPY2 is attributed to the reduced wavefunction overlap of delocalized charges, achieved by spatially separating the donor and acceptor units with an alkyl linker, thereby restricting the recombination pathways. Adding 1,8-diiodooctane (DIO) into DCPY2 further reduced the recombination rate by facilitating acceptor aggregation, allowing free charges to become more delocalized. The DIO-assisted aggregation in DCPY2 (5% DIO) is evidenced by an increased pseudo-pure domain size of Y-O6. Fine molecular control at the donor/acceptor interface in the double-cable polymer achieves reduced non-geminate recombination under efficient charge generation, increased mobility, and charge carrier lifetime, thereby achieving superior performance. Nevertheless, the FF is still limited by relatively low mobility compared to the blend, suggesting the potential for further mobility improvement through enhanced higher-dimensional packing of the double-cable material.

12.
Future Oncol ; : 1-11, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041580

ABSTRACT

Aim: This multicenter retrospective study aimed to develop a novel prognostic system for extranodal natural killer/T-cell lymphoma (ENKTL) patients in the era of pegaspargase/L-asparaginase. Materials & methods: A total of 844 newly diagnosed ENKTL patients were included. Results: Multivariable analysis confirmed that Eastern Cooperative Oncology Group performance status, lactate dehydrogenase, Chinese Southwest Oncology Group and Asia Lymphoma Study Group ENKTL (CA) system, and albumin were independent prognostic factors. By rounding up the hazard ratios from four significant variables, a maximum of 7 points were assigned. The model of Huaihai Lymphoma Working Group-Natural killer/T-cell Lymphoma prognostic index (NPI) was identified with four risk groups and the 5-year overall survival was 88.2, 66.7, 54.3 and 30.5%, respectively. Conclusion: Huaihai Lymphoma Working Group-NPI provides a feasible stratification system for patients with ENKTL in the era of pegaspargase/L-asparaginase.


[Box: see text].

13.
Virulence ; 15(1): 2387172, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39082211

ABSTRACT

The Eaf6 protein, a conserved component of the NuA4 and NuA3 complexes in yeast and MOZ/MORF complexes in humans, plays crucial roles in transcriptional activation, gene regulation, and cell cycle control. Despite its significance in other organisms, the functional role of Eaf6 in entomopathogenic fungi (EPF) remained unexplored. Here, we investigate the function of BbEaf6, the Eaf6 homolog in the entomopathogenic fungus Beauveria bassiana. We demonstrate that BbEaf6 is predominantly localized in nuclei, similar to its counterpart in other fungi. Deletion of BbEaf6 resulted in delayed conidiation, reduced conidial yield, and altered conidial properties. Transcriptomic analysis revealed dysregulation of the genes involved in asexual development and cell cycle progression in the ΔBbEaf6 mutant. Furthermore, the ΔBbEaf6 mutant exhibited decreased tolerance to various stresses, including ionic stress, cell wall perturbation, and DNA damage stress. Notably, the ΔBbEaf6 mutant displayed attenuated virulence in insect bioassays, accompanied by dysregulation of genes associated with cuticle penetration and haemocoel infection. Overall, our study elucidates the multifaceted role of BbEaf6 in stress response, development, and virulence in B. bassiana, providing valuable insights into the molecular mechanisms governing fungal pathogenesis and potential targets for pest management strategies.


Subject(s)
Beauveria , Fungal Proteins , Gene Expression Regulation, Fungal , Spores, Fungal , Stress, Physiological , Beauveria/genetics , Beauveria/pathogenicity , Beauveria/physiology , Virulence/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Animals , Spores, Fungal/genetics , Gene Expression Profiling , Gene Deletion , Insecta/microbiology
14.
J Med Chem ; 67(15): 12660-12675, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39045829

ABSTRACT

Aberrant FGF2/FGFR signaling is implicated in lung squamous cell carcinoma (LSCC), posing treatment challenges due to the lack of targeted therapeutic options. Designing drugs that block FGF2 signaling presents a promising strategy different from traditional kinase inhibitors. We previously reported a ColVα1-derived fragment, HEPV (127AA), that inhibits FGF2-induced angiogenesis. However, its large size may limit therapeutic application. This study combines rational peptide design, molecular dynamics simulations, knowledge-based prediction, and GUV and FRET assays to identify smaller peptides with FGF2-blocking properties. We synthesized two novel peptides, HBS-P1 (45AA) and HBS-P2 (66AA), that retained the heparin-binding site. Both peptides demonstrated anti-LSCC and antiangiogenesis properties in cell viability and microvessel network induction assays. In two LSCC subcutaneous models, HBS-P1, with its affinity for FGF2 and enhanced penetration ability, demonstrated substantial therapeutic potential without apparent toxicities. Our study provides the first evidence supporting the development of collagen V-derived natural peptides as FGF2-blocking agents for LSCC treatment.


Subject(s)
Carcinoma, Squamous Cell , Drug Design , Fibroblast Growth Factor 2 , Lung Neoplasms , Peptides , Fibroblast Growth Factor 2/antagonists & inhibitors , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Animals , Peptides/pharmacology , Peptides/chemistry , Peptides/chemical synthesis , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Molecular Dynamics Simulation , Mice, Nude
16.
Ecotoxicol Environ Saf ; 281: 116596, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896899

ABSTRACT

Cadmium (Cd), which accumulates in tobacco leaves, enters the human body through inhalation of smoke, causing harmful effects on health. Therefore, identifying the pivotal factors that govern the absorption and resistance of Cd in tobacco is crucial for mitigating the harmful impact of Cd. In the present study, four different Cd-sensitive varieties, namely, ZhongChuan208 (ZC) with resistance, ZhongYan100 (ZY), K326 with moderate resistance, and YunYan87 (YY) with sensitivity, were cultivated in hydroponic with different Cd concentrations (20 µM, 40 µM, 60 µM and 80 µM). The results indicated that plant growth was significantly decreased by Cd. Irrespective of the Cd concentration, ZC exhibited the highest biomass, while YY had the lowest biomass; ZY and K326 showed intermediate levels. Enzymatic (APX, CAT, POD) and nonenzymatic antioxidant (Pro, GSH) systems showed notable variations among varieties. The multifactor analysis suggested that the ZC and ZY varieties, with higher levels of Pro and GSH content, contribute to a decrease in the levels of MDA and ROS. Among all the Cd concentrations, ZC exhibited the lowest Cd accumulation, while YY showed the highest. Additionally, there were significant differences observed in Cd distribution and translocation factors among the four different varieties. In terms of Cd distribution, cell wall Cd accounted for the highest proportion of total Cd, and organelles had the lowest proportion. Among the varieties, ZC showed lower Cd levels in the cell wall, soluble fraction, and organelles. Conversely, YY exhibited the highest Cd accumulation in all tissues; K326 and ZY had intermediate levels. Translocation factors (TF) varied among the varieties under Cd stress, with ZC and ZY showing lower TF compared to YY and K326. This phenomenon mainly attributed to regulation of the NtNramp3 and NtNramp5 genes, which are responsible for the absorption and transport of Cd. This study provides a theoretical foundation for the selection and breeding of tobacco varieties that are resistant to or accumulate less Cd.


Subject(s)
Nicotiana , Nicotiana/chemistry , Nicotiana/genetics , Nicotiana/growth & development , Nicotiana/metabolism , Cadmium/toxicity , Drug Resistance , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects , Antioxidants/metabolism , Cation Transport Proteins/metabolism
17.
Acta Histochem ; 126(4): 152169, 2024 May.
Article in English | MEDLINE | ID: mdl-38850586

ABSTRACT

Alveolar, the smallest structural and functional units within the respiratory system, play a crucial role in maintaining lung function. Alveolar damage is a typical pathological hallmark of respiratory diseases. Nevertheless, there is currently no simple, rapid, economical, and unbiased method for quantifying alveolar size for entire lung tissue. Here, firstly, we conducted lung sample slicing based on the size, shape, and distribution of airway branches of different lobes. Next, we performed HE staining on different slices. Then, we provided an unbiased quantification of alveolar size using free software ImageJ. Through this protocol, we demonstrated that C57Bl/6 mice exhibit varying alveolar sizes among different lobes. Collectively, we provided a simple and unbiased method for a more comprehensive quantification of alveolar size in mice, which holds promise for a broader range of respiratory research using mouse models.


Subject(s)
Eosine Yellowish-(YS) , Hematoxylin , Lung , Mice, Inbred C57BL , Pulmonary Alveoli , Staining and Labeling , Animals , Mice , Pulmonary Alveoli/pathology , Staining and Labeling/methods , Lung/pathology , Male
18.
JAMA Oncol ; 10(7): 932-940, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38869865

ABSTRACT

Importance: Uninterrupted targeted therapy until disease progression or intolerable toxic effects is currently the routine therapy for advanced non-small cell lung cancer (NSCLC) involving driver gene variations. However, drug resistance is inevitable. Objective: To assess the clinical feasibility of adaptive de-escalation tyrosine kinase inhibitor (TKI) treatment guided by circulating tumor DNA (ctDNA) for achieving complete remission after local consolidative therapy (LCT) in patients with advanced NSCLC. Design, Setting, and Participants: This prospective nonrandomized controlled trial was conducted at a single center from June 3, 2020, to July 19, 2022, and included 60 patients with advanced NSCLC with driver variations without radiologically detectable disease after TKI and LCT. The median (range) follow-up time was 19.2 (3.8-29.7) months. Data analysis was conducted from December 15, 2022, to May 10, 2023. Intervention: Cessation of TKI treatment and follow-up every 3 months. Treatment was restarted in patients with progressive disease (defined by the Response Evaluation Criteria in Solid Tumors 1.1 criteria), detectable ctDNA, or elevated carcinoembryonic antigen (CEA) levels, whichever manifested first, and treatment ceased if all indicators were negative during follow-up surveillance. Main Outcomes and Measures: Progression-free survival (PFS). Secondary end points were objective response rate, time to next treatment, and overall survival. Results: Among the total study sample of 60 participants (median [range] age, 55 [21-75] years; 33 [55%] were female), the median PFS was 18.4 (95% CI, 12.6-24.2) months and the median (range) total treatment break duration was 9.1 (1.5-28.1) months. Fourteen patients (group A) remained in TKI cessation with a median (range) treatment break duration of 20.3 (6.8-28.1) months; 31 patients (group B) received retreatment owing to detectable ctDNA and/or CEA and had a median PFS of 20.2 (95% CI, 12.9-27.4) months with a median (range) total treatment break duration of 8.8 (1.5-20.6) months; and 15 patients (group C) who underwent retreatment with TKIs due to progressive disease had a median PFS of 5.5 (95% CI, 1.5-7.2) months. For all participants, the TKI retreatment response rate was 96%, the median time to next treatment was 29.3 (95% CI, 25.3-35.2) months, and the data for overall survival were immature. Conclusions and Relevance: The findings of this nonrandomized controlled trial suggest that this adaptive de-escalation TKI strategy for patients with NSCLC is feasible in those with no lesions after LCT and a negative ctDNA test result. This might provide a de-escalation treatment strategy guided by ctDNA for the subset of patients with advanced NSCLC. Trial Registration: ClinicalTrials.gov Identifier: NCT03046316.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Female , Male , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Middle Aged , Aged , Adult , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/administration & dosage , Prospective Studies , Molecular Targeted Therapy/methods
20.
Front Plant Sci ; 15: 1393663, 2024.
Article in English | MEDLINE | ID: mdl-38817934

ABSTRACT

Cabomba caroliniana A. Gray, an ornamental submerged plant indigenous to tropical America, has been introduced to numerous countries in Europe, Asia, and Oceania, impacting native aquatic ecosystems. Given this species is a popular aquarium plant and widely traded, there is a high risk of introduction and invasion into other environments. In the current study the potential global geographic distribution of C. caroliniana was predicted under the effects of climate change and human influence in an optimised MaxEnt model. The model used rigorously screened occurrence records of C. caroliniana from hydro informatic datasets and 20 associated influencing factors. The findings indicate that temperature and human-mediated activities significantly influenced the distribution of C. caroliniana. At present, C. caroliniana covers an area of approximately 1531×104 km2 of appropriate habitat, especially in the south-eastern parts of South, central and North America, Southeast Asia, eastern Australia, and most of Europe. The suitable regions are anticipated to expand under future climate scenarios; however, the dynamics of the changes vary between different extents of climate change. For example, C. caroliniana is expected to expand to higher latitudes, following global temperature increases under SSP1-2.6 and SSP2-4.5 scenarios, however, intolerance to temperature extremes may mediate invasion at higher latitudes under future extreme climate scenarios, e.g., SSP5-8.5. Owing to the severe impacts its invasion causes, early warning and stringent border quarantine processes are required to guard against the introduction of C. caroliniana especially in the invasion hotspots such as, Peru, Italy, and South Korea.

SELECTION OF CITATIONS
SEARCH DETAIL