Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.056
Filter
1.
Biomed Chromatogr ; : e5987, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126351

ABSTRACT

The traditional formulation Hanchuan zupa granules (HCZPs) have been widely used for controlling coronavirus disease 2019 (COVID-19). However, its active components remain unknown. Here, HCZP components targeting the spike receptor-binding domain (S-RBD) of SARS-CoV-2 were investigated using a surface plasmon resonance (SPR) biosensor-based active ingredient recognition system (SPR-AIRS). Recombinant S-RBD proteins were immobilized on the SPR chip by amine coupling for the prescreening of nine HCZP medicinal herbs. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) identified gallic acid (GA) and methyl gallate (MG) from Rosa rugosa as S-RBD ligands, with KD values of 2.69 and 0.95 µM, respectively, as shown by SPR. Molecular dynamics indicated that GA formed hydrogen bonds with G496, N501, and Y505 of S-RBD, and MG with G496 and Y505, inhibiting S-RBD binding to angiotensin-converting enzyme 2 (ACE2). SPR-based competition analysis verified that both compounds blocked S-RBD and ACE2 binding, and SPR demonstrated that GA and MG bound to ACE2 (KD = 5.10 and 4.05 µM, respectively), suggesting that they blocked the receptor and neutralized SARS-CoV-2. Infection with SARS-CoV-2 pseudovirus showed that GA and MG suppressed viral entry into 293T-ACE2 cells. These S-RBD inhibitors have potential for drug design, while the findings provide a reference on HCZP composition and its use for treating COVID-19.

2.
Pharmacol Res ; : 107346, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127263

ABSTRACT

Synovitis is characterized by a distinct metabolic profile featuring the accumulation of lactate, a byproduct of cellular metabolism within inflamed joints. This study reveals that the activation of the CD31 signal by lactate instigates a metabolic shift, specifically initiating endothelial cell autophagy. This adaptive process plays a pivotal role in fulfilling the augmented energy and biomolecule demands associated with the formation of new blood vessels in the synovium of Rheumatoid Arthritis (RA). Additionally, the amino acid substitutions in the CD31 cytoplasmic tail at the Y663F and Y686F sites of the immunoreceptor tyrosine-based inhibitory motifs (ITIM) in Crispr/Cas9 transgenic mice alleviate RA. Mechanistically, this results in the downregulation of glycolysis and autophagy pathways. These findings significantly advance our understanding of potential therapeutic strategies for modulating these processes in synovitis and, potentially, other autoimmune diseases.

3.
Chem Sci ; 15(30): 12026-12035, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39092107

ABSTRACT

Alkyne annulation has been widely used in organic synthesis for the construction of azacycles with unique structural and physicochemical properties. However, the analogous transformation of fluoroalkynes remains a challenge and has seen limited progress. Herein we report a 1,2,3,4-tetrafunctionalization of polyfluoroalkynes for the divergent construction of 5-7-membered (E)-1,2-difluorovinyl azacycles. The use of the fluorine atom as a detachable "activator" not only obviates the use of any transition metal catalysts and oxidizing reagents, but also ensures the [3-5 + 2]-annulation and defluorinative functionalization of fluoroalkynes with high chemo-, regio-, and stereoselectivities. This method exhibits a broad substrate scope, good functional group tolerance, and excellent scalability, providing a modular platform for accessing fluorinated skeletons of medicinal and biological interest. The late-stage modification of complex molecules, the multi-component 1,2-diamination of fluoroalkyne, and the synthesis of valuable organofluorides from the obtained products further highlight the real-world utility of this fluoroalkyne annulation technology.

4.
Article in English | MEDLINE | ID: mdl-39092612

ABSTRACT

Polymer materials with multiple stimuli-responsive properties have demonstrated many potential and practical applications. By covalently introducing spiropyran (SP1) and spirothiopyran (STP) into the polyurethane backbone, photochromic, mechanochromic, and thermally discolored polymer materials have been prepared. In this work, we report for the first time that white light (violet, blue, and green light) above a certain intensity can activate STP to green color. Based on the above discovery, the polyurethane with SP1 and STP can exhibit reversible three-color changes (brown, green, and purple) in response to four stimuli: ultraviolet irradiation, white light irradiation, mechanical stress, and heat. The color-changing polymer materials have high color contrast and excellent reversibility, and can be used for reversible writing, anticounterfeiting and information encryption, etc.

5.
Phys Rev Lett ; 133(4): 046503, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39121416

ABSTRACT

The kagome spin ice can host frustrated magnetic excitations by flipping its local spin. Under an inelastic tunneling condition, the tip in a scanning tunneling microscope can flip the local spin, and we apply this technique to kagome metal HoAgGe with a long-range ordered spin ice ground state. Away from defects, we discover a pair of pronounced dips in the local tunneling spectrum at symmetrical bias voltages with negative intensity values, serving as a striking inelastic tunneling signal. This signal disappears above the spin ice formation temperature and has a dependence on the magnetic fields, demonstrating its intimate relation with the spin ice magnetism. We provide a two-level spin-flip model to explain the tunneling dips considering the spin ice magnetism under spin-orbit coupling. Our results uncover a local emergent excitation of spin ice magnetism in a kagome metal, suggesting that local electrical field induced spin flip climbs over a barrier caused by spin-orbital locking.

6.
Insect Sci ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121464

ABSTRACT

The greater wax moth, Galleria mellonella (Lepidoptera, Pyralidae), is a major bee pest that inflicts considerable harm on beehives, leading to economic losses. It also serves as a valuable resource insect and a model organism. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system plays a crucial role in improving economic insect breeding and developing efficient agricultural pest management systems in Lepidoptera. However, the CRISPR/Cas9 protocols have not been developed for G. mellonella. Here, the Gmebony knockout (KO) strain was established using the CRISPR/Cas9 genome editing system. We obtained Gmebony KO strain in the G4 generation, which took approximately 10 months. When compared with wild-type, the head, notum, and the terminal abdominal surface of 1st to 4th instar larvae in the KO strain changed from yellow to brown, and these regions of the KO strain gradually transformed into a black color from the 5th instar larvae, and the body color of the adult moth in the KO strain changed to black. The developmental period of the early larval and the following larval instars extended. The embryonic hatchability of the Gmebony KO strain was significantly decreased. The pupal body weight of the Gmebony KO strain was not affected. The feasibility of the CRISPR/Cas9 methodology was validated by single-target editing of Gmebony. Our findings provide the first evidence that the ebony gene can serve as a pigmentation reference gene for genetic modifications of G. mellonella. Meanwhile, it can be utilized in the development of genome editing control strategies and for gene function analyses in G. mellonella.

7.
Chem Sci ; 15(31): 12264-12269, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39118606

ABSTRACT

Metal oxides are promising (photo)electrocatalysts for sustainable energy technologies due to their good activity and abundant resources. Their applications such as photocatalytic water splitting predominantly involve aqueous interfaces under electrochemical conditions, but in situ probing oxide-water interfaces is proven to be extremely challenging. Here, we present an electrochemical scanning tunneling microscopy (EC-STM) study on the rutile TiO2(110)-water interface, and by tuning surface redox chemistry with careful potential control we are able to obtain high quality images of interfacial structures with atomic details. It is interesting to find that the interfacial water exhibits an unexpected double-row pattern that has never been observed. This finding is confirmed by performing a large scale simulation of a stepped interface model enabled by machine learning accelerated molecular dynamics (MLMD) with ab initio accuracy. Furthermore, we show that this pattern is induced by the steps present on the surface, which can propagate across the terraces through interfacial hydrogen bonds. Our work demonstrates that by combining EC-STM and MLMD we can obtain new atomic details of interfacial structures that are valuable to understand the activity of oxides under realistic conditions.

8.
World J Clin Cases ; 12(22): 5263-5270, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39109031

ABSTRACT

BACKGROUND: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and clinically aggressive hematologic malignancy originating from the precursors of plasmacytoid dendritic cells. BPDCN often involves the skin, lymph nodes, and bone marrow, with rapid clinical progression and a poor prognosis. The BPDCN diagnosis is mainly based on the immunophenotype. CASE SUMMARY: In this paper, we retrospectively analyzed 2 cases of BPDCN. Both patients were elderly males. The lesions manifested as skin masses. Morphological manifestations included diffuse and dense tumor cell infiltration of the dermis and subcutaneous tissues. Immunohistochemistry staining showed that cluster of differentiation CD4, CD56, CD43, and CD123 were positive. CONCLUSION: In this paper, we retrospectively analyzed 2 cases of BPDCN. Both patients were elderly males. The lesions manifested as skin masses. Morphological manifestations included diffuse and dense tumor cell infiltration of the dermis and subcutaneous tissues. Immunohistochemistry staining showed that cluster of differentiation CD4, CD56, CD43, and CD123 were positive.

9.
Curr Genomics ; 25(3): 226-235, 2024 May 31.
Article in English | MEDLINE | ID: mdl-39086996

ABSTRACT

Introduction: Nicotine degradation is a new strategy to block nicotine-induced pathology. The potential of human microbiota to degrade nicotine has not been explored. Aims: This study aimed to uncover the genomic potentials of human microbiota to degrade nicotine. Methods: To address this issue, we performed a systematic annotation of Nicotine-Degrading Enzymes (NDEs) from genomes and metagenomes of human microbiota. A total of 26,295 genomes and 1,596 metagenomes for human microbiota were downloaded from public databases and five types of NDEs were annotated with a custom pipeline. We found 959 NdhB, 785 NdhL, 987 NicX, three NicA1, and three NicA2 homologs. Results: Genomic classification revealed that six phylum-level taxa, including Proteobacteria, Firmicutes, Firmicutes_A, Bacteroidota, Actinobacteriota, and Chloroflexota, can produce NDEs, with Proteobacteria encoding all five types of NDEs studied. Analysis of NicX prevalence revealed differences among body sites. NicX homologs were found in gut and oral samples with a high prevalence but not found in lung samples. NicX was found in samples from both smokers and non-smokers, though the prevalence might be different. Conclusion: This study represents the first systematic investigation of NDEs from the human microbiota, providing new insights into the physiology and ecological functions of human microbiota and shedding new light on the development of nicotine-degrading probiotics for the treatment of smoking-related diseases.

10.
Front Immunol ; 15: 1391848, 2024.
Article in English | MEDLINE | ID: mdl-38983856

ABSTRACT

Background: For Rheumatoid Arthritis (RA), a long-term chronic illness, it is essential to identify and describe patient subtypes with comparable goal status and molecular biomarkers. This study aims to develop and validate a new subtyping scheme that integrates genome-scale transcriptomic profiles of RA peripheral blood genes, providing a fresh perspective for stratified treatments. Methods: We utilized independent microarray datasets of RA peripheral blood mononuclear cells (PBMCs). Up-regulated differentially expressed genes (DEGs) were subjected to functional enrichment analysis. Unsupervised cluster analysis was then employed to identify RA peripheral blood gene expression-driven subtypes. We defined three distinct clustering subtypes based on the identified 404 up-regulated DEGs. Results: Subtype A, named NE-driving, was enriched in pathways related to neutrophil activation and responses to bacteria. Subtype B, termed interferon-driving (IFN-driving), exhibited abundant B cells and showed increased expression of transcripts involved in IFN signaling and defense responses to viruses. In Subtype C, an enrichment of CD8+ T-cells was found, ultimately defining it as CD8+ T-cells-driving. The RA subtyping scheme was validated using the XGBoost machine learning algorithm. We also evaluated the therapeutic outcomes of biological disease-modifying anti-rheumatic drugs. Conclusions: The findings provide valuable insights for deep stratification, enabling the design of molecular diagnosis and serving as a reference for stratified therapy in RA patients in the future.


Subject(s)
Arthritis, Rheumatoid , Gene Expression Profiling , Transcriptome , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/diagnosis , Humans , Antirheumatic Agents/therapeutic use , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Biomarkers , CD8-Positive T-Lymphocytes/immunology
11.
Echocardiography ; 41(7): e15876, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980981

ABSTRACT

OBJECTIVES: To assess the ability of left atrial (LA) strain parameters to discriminate patients with elevated left atrial pressure (LAP) from patients with atrial fibrillation (AF). METHODS AND RESULTS: A total of 142 patients with non-valvular AF who underwent first catheter ablation (CA) between November 2022 and November 2023 were enrolled in the study. Conventional and speckle-tracking echocardiography (STE) were performed in all patients within 24 h before CA, and LAP was invasively measured during the ablation procedure. According to mean LAP, the study population was classified into two groups of normal LAP (LAP < 15 mmHg, n = 101) and elevated LAP (LAP ≥ 15 mmHg, n = 41). Compared with the normal LAP group, elevated LAP group showed significantly reduced LA reservoir strain (LASr) [9.14 (7.97-11.80) vs. 20 (13.59-26.96), p < .001], and increased LA filling index [9.60 (7.15-12.20) vs. 3.72 (2.17-5.82), p < .001], LA stiffness index [1.13 (.82-1.46) vs. .47 (.30-.70), p < .001]. LASr, LA filling index and LA stiffness index were independent predictors of elevated LAP after adjusted by the type of AF, EDT, E/e', mitral E, and peak acceleration rate of mitral E velocity. The receiver-operating characteristic curve (ROC) analysis showed LA strain parameters (area under curve [AUC] .794-.819) could provide similar or greater diagnostic accuracy for elevated LAP, as compared to conventional echocardiographic parameters. Furthermore, the novel algorithms built by LASr, LA stiffness index, LA filling index, and left atrial emptying fraction (LAEF), was used to discriminate elevated LAP in AF with good accuracy (AUC .880, accuracy of 81.69%, sensitivity of 80.49%, and specificity of 82.18%), and much better than 2016 ASE/EACVI algorithms in AF. CONCLUSION: In patients with AF, LA strain parameters could be useful to predict elevated LAP and non-inferior to conventional echocardiographic parameters. Besides, the novel algorithm built by LA strain parameters combined with conventional parameters would improve the diagnostic efficiency.


Subject(s)
Atrial Fibrillation , Atrial Function, Left , Atrial Pressure , Echocardiography , Heart Atria , Humans , Atrial Fibrillation/physiopathology , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Female , Male , Middle Aged , Heart Atria/diagnostic imaging , Heart Atria/physiopathology , Echocardiography/methods , Atrial Pressure/physiology , Atrial Function, Left/physiology , Predictive Value of Tests , Catheter Ablation/methods , Reproducibility of Results , Aged
12.
iScience ; 27(6): 109798, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947509

ABSTRACT

High salt (HS) consumption is a risk factor for multiple autoimmune disorders via disturbing immune homeostasis. Nevertheless, the exact mechanisms by which HS exacerbates rheumatoid arthritis (RA) pathogenesis remain poorly defined. Herein, we found that heightened phosphorylation of PDPK1 and SGK1 upon HS exposure attenuated FoxO1 expression to enhance the glycolytic capacity of CD4 T cells, resulting in strengthened Th17 but compromised Treg program. GSK2334470 (GSK), a dual PDPK1/SGK1 inhibitor, effectively mitigated the HS-induced enhancement in glycolytic capacity and the overproduction of IL-17A. Therefore, administration of GSK markedly alleviated HS-exacerbated RA progression in collagen-induced arthritis (CIA) model. Collectively, our data indicate that HS consumption subverts Th17/Treg homeostasis through the PDPK1-SGK1-FoxO1 signaling, while GSK could be a viable drug against RA progression in clinical settings.

14.
Mar Pollut Bull ; 205: 116683, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972218

ABSTRACT

This study examines the combined effects of polyethylene microplastics (PE-MP) and copper (Cu2+) on the immune and oxidative response of Litopenaeus vannamei. PE-MP adsorbed with Cu2+ at 2.3, 6.8, and 16.8 ng (g shrimp)-1) were injected into L. vannamei. Over 14 days, survival rates were monitored, and immune and oxidative stress parameters were assessed. The results showed that combined exposure to PE-MP and Cu2+ significantly reduced the survival rate and decreased total haemocyte count. Immune-related parameters (phagocytic rate, phenoloxidase and superoxide dismutase (SOD)) and antioxidant-related parameters (SOD, catalase and glutathione peroxidase mRNA and enzyme) also decreased, while respiratory burst activity significantly increased, indicating immune and antioxidant system disruption. Additionally, there was a significant increase in oxidative stress, as measured by malondialdehyde levels. Histopathological analysis revealed severe muscle, hepatopancreas, and gill damage. These results suggest that simultaneous exposure to PE-MP and Cu2+ poses greater health risks to white shrimp.


Subject(s)
Copper , Microplastics , Oxidative Stress , Penaeidae , Polyethylene , Water Pollutants, Chemical , Animals , Penaeidae/drug effects , Copper/toxicity , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Polyethylene/toxicity , Microplastics/toxicity , Superoxide Dismutase/metabolism , Gills/drug effects , Catalase/metabolism , Glutathione Peroxidase/metabolism
15.
Environ Pollut ; : 124592, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39047887

ABSTRACT

Cyanobacterial blooms are expanding world-wide in freshwater and marine environments, and can cause serious ecological and environmental issues, which also contribute to the spread of antibiotic resistance genes (ARGs). However, the mechanistic understanding of cyanobacteria-mediated resistance dynamics is not fully elucidated yet. We selected Microcystis aeruginosa as a model cyanobacteria to illustrate how cyanobacteria mediate the evolution and transfer processes of bacterial antibiotic resistance. The results show that the presence of cyanobacteria significantly decreased the abundance of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) by 3% - 99% and 2%-18%, respectively. In addition, it clearly altered bacterial community structure, with the dominant genera evolving from Acinetobacter (27%) and Enterobacter (42%) to Porphyrobacter (59%). The abundance of ARGs positively correlated with Proteobacteria and Firmicutes, rather than Cyanobacteria, and Bacteroidetes. In the presence of cyanobacteria, the transfer events of bacterial resistance genes via conjugation were found to decrease by 10% - 89% (p < 0.05). Surprisingly, we found an extradentary high transfer frequency (about 0.1) for the ARGs via plasmid conjugation from the bacteria into M. aeruginosa population. It confirmed the role of cyanobacterial population as the competent hosts to facilitate ARGs spreading. Our findings provide valuable information on the risk evaluation of ARGs caused by cyanobacterial blooms in aquatic environments, key for the protection and assessment of aquatic environmental quality.

16.
J Ovarian Res ; 17(1): 150, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030559

ABSTRACT

BACKGROUND: Epithelial ovarian carcinoma (EOC) is a prevalent gynaecological malignancy. The prognosis of patients with EOC is related to acetylation modifications and immune responses in the tumour microenvironment (TME). However, the relationships between acetylation-related genes, patient prognosis, and the tumour immune microenvironment (TIME) are not yet understood. Our research aims to investigate the link between acetylation and the tumour microenvironment, with the goal of identifying new biomarkers for estimating survival of patients with EOC. METHODS: Using data downloaded from the tumour genome atlas (TCGA), genotypic tissue expression (GTEx), and gene expression master table (GEO), we comprehensively evaluated acetylation-related genes in 375 ovarian cancer specimens and identified molecular subtypes using unsupervised clustering. The prognosis, TIME, stem cell index and functional concentration analysis were compared among the three groups. A risk model based on differential expression of acetylation-related genes was established through minimum absolute contraction and selection operator (LASSO) regression analysis, and the predictive validity of this feature was validated using GEO data sets. A nomogram is used to predict a patient's likelihood of survival. In addition, different EOC risk groups were evaluated for timing, tumour immune dysfunction and exclusion (TIDE) score, stemness index, somatic mutation, and drug sensitivity. RESULTS: We used the mRNA levels of the differentially expressed genes related to acetylation to classify them into three distinct clusters. Patients with increased immune cell infiltration and lower stemness scores in cluster 2 (C2) exhibited poorer prognosis. Immunity and tumourigenesis-related pathways were highly abundant in cluster 3 (C3). We developed a prognostic model for ten differentially expressed acetylation-related genes. Kaplan-Meier analysis demonstrated significantly worse overall survival (OS) in high-risk patients. Furthermore, the TIME, tumour immune dysfunction and exclusion (TIDE) score, stemness index, tumour mutation burden (TMB), immunotherapy response, and drug sensitivity all showed significant correlations with the risk scores. CONCLUSIONS: Our study demonstrated a complex regulatory mechanism of acetylation in EOC. The assessment of acetylation patterns could provide new therapeutic strategies for EOC immunotherapy to improve the prognosis of patients.


Subject(s)
Carcinoma, Ovarian Epithelial , Ovarian Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Female , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/mortality , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/metabolism , Acetylation , Prognosis , Ovarian Neoplasms/immunology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Middle Aged
17.
J Orthop Surg Res ; 19(1): 421, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034400

ABSTRACT

BACKGROUND: Cellular senescence features irreversible growth arrest and secretion of multiple proinflammatory cytokines. Cyclic GMP-AMP synthase (cGAS) detects DNA damage and activates the DNA-sensing pathway, resulting in the upregulation of inflammatory genes and induction of cellular senescence. This study aimed to investigate the effect of cGAS in regulating senescence of nucleus pulposus (NP) cells under inflammatory microenvironment. METHODS: The expression of cGAS was evaluated by immunohistochemical staining in rat intervertebral disc (IVD) degeneration model induced by annulus stabbing. NP cells were harvested from rat lumbar IVD and cultured with 10ng/ml IL-1ß for 48 h to induce premature senescence. cGAS was silenced by cGAS specific siRNA in NP cells and cultured with IL-1ß. Cellular senescence was evaluated by senescence-associated beta-galactosidase (SA-ß-gal) staining and flow cytometry. The expression of senescence-associated secretory phenotype including IL-6, IL-8, and TNF-a was evaluated by ELISA and western blotting. RESULTS: cGAS was detected in rat NP cells in cytoplasm and the expression was significantly increased in degenerated IVD. Culturing in 10ng/ml IL-1ß for 48 h induced cellular senescence in NP cells with attenuation of G1-S phase transition. In senescent NP cells the expression of cGAS, p53, p16, NF-kB, IL-6, IL-8, TNF-α was significantly increased while aggrecan and collagen type II was reduced than in normal NP cells. In NP cells with silenced cGAS, the expression of p53, p16, NF-kB, IL-6, IL-8, and TNF-α was reduced in inflammatory culturing with IL-1ß. CONCLUSION: cGAS was increased by NP cells in degenerated IVD promoting cellular senescence and senescent inflammatory phenotypes. Targeting cGAS may alleviate IVD degeneration by reducing NP cell senescence.


Subject(s)
Cellular Senescence , Intervertebral Disc Degeneration , Nucleotidyltransferases , Nucleus Pulposus , Rats, Sprague-Dawley , Cellular Senescence/physiology , Animals , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Cells, Cultured , Rats , Male , Inflammation/metabolism , Inflammation/pathology , Interleukin-1beta/metabolism
18.
Front Pharmacol ; 15: 1424940, 2024.
Article in English | MEDLINE | ID: mdl-39040472

ABSTRACT

Background: Porcine bile powder (PBP) is a traditional Chinese medicine that has been used for centuries in various therapeutic applications. However, PBP has not previously undergone comprehensive component analysis and not been evaluated for safety through standard in vivo toxicological studies. Methods: In our study, we characterized the component of PBP by liquid chromatography-mass spectrometry. The acute and subchronic oral toxicity, genotoxicity, and teratogenicity studies of PBP were designed and conducted in Kunming mice and Sprague-Dawley (SD) rats. Results: The chemical analysis of PBP showed that the main components of PBP were bile acids (BAs), especially glycochenodeoxycholic acid. There were no signs of toxicity observed in the acute oral test and the subchronic test. In the genotoxicity tests, no positive results were observed in the bacterial reverse mutation test. Additionally, in the mammalian micronucleus test and mouse spermatocyte chromosomal aberration test, no abnormal chromosomes were observed. In the teratogenicity test, no abnormal fetal development was observed. Conclusion: Our findings demonstrate that PBP, composed mainly of BAs, is non-toxic and safe based on the conditions tested in this study.

19.
Compr Rev Food Sci Food Saf ; : e13395, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042377

ABSTRACT

Peptidomics strategies with high throughput, sensitivity, and reproducibility are key tools for comprehensively analyzing peptide composition and potential functional activities in foods. Nevertheless, complex signal interference, limited ionization efficiency, and low abundance have impeded food-derived peptides' progress in food detection and analysis. As a result, novel functional materials have been born at the right moment that could eliminate interference and perform efficient enrichment. Of note, few studies have focused on developing peptide enrichment materials for food sample analysis. This work summarizes the development of endogenous peptide, phosphopeptide, and glycopeptide enrichment utilizing materials that have been employed extensively recently: organic framework materials, carbon-based nanomaterials, bio-based materials, magnetic materials, and molecularly imprinted polymers. It focuses on the limitations, potential solutions, and future prospects for application in food peptidomics of various advanced functional materials. The size-exclusion effect of adjustable aperture and the modification of magnetic material enhanced the sensitivity and selectivity of endogenous peptide enrichment and aided in streamlining the enrichment process and cutting down on enrichment time. Not only that, the immobilization of metal ions such as Ti4+ and Nb5+ enhanced the capture of phosphopeptides, and the introduction of hydrophilic groups such as arginine, L-cysteine, and glutathione into bio-based materials effectively optimized the hydrophilic enrichment of glycopeptides. Although a portion of the carefully constructed functional materials currently only exhibit promising applications in the field of peptide enrichment for analytical chemistry, there is reason to believe that they will further advance the field of food peptidomics through improved pre-treatment steps.

20.
Nat Commun ; 15(1): 5624, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965231

ABSTRACT

Graphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is designed to characterize the dynamic interfacial process of graphene with an adjustable number of layers, which is based on synergistic enhancement of localized surface plasmons from shell-isolated nanoparticles and a metal substrate. By employing such a strategy combined with complementary characterization techniques, we study the potential-dependent configuration of adsorbed ions and capacitance curves for graphene based on the number of layers. As the number of layers increases, the properties of graphene transform from a metalloid nature to graphite-like behavior. The charging mechanism shifts from co-ion desorption in single-layer graphene to ion exchange domination in few-layer graphene. The increase in area specific capacitance from 64 to 145 µF cm-2 is attributed to the influence on ion packing, thereby impacting the electrochemical performance. Furthermore, the potential-dependent coordination structure of lithium bis(fluorosulfonyl) imide in tetraglyme ([Li(G4)][FSI]) at graphene/electrolyte interface is revealed. This work adds to the understanding of graphene interfaces with distinct properties, offering insights for optimization of electrochemical capacitors.

SELECTION OF CITATIONS
SEARCH DETAIL