Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters








Publication year range
1.
Nat Commun ; 15(1): 4114, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750057

ABSTRACT

Cellular sensitivity to ferroptosis is primarily regulated by mechanisms mediating lipid hydroperoxide detoxification. We show that inositol-requiring enzyme 1 (IRE1α), an endoplasmic reticulum (ER) resident protein critical for the unfolded protein response (UPR), also determines cellular sensitivity to ferroptosis. Cancer and normal cells depleted of IRE1α gain resistance to ferroptosis, while enhanced IRE1α expression promotes sensitivity to ferroptosis. Mechanistically, IRE1α's endoribonuclease activity cleaves and down-regulates the mRNA of key glutathione biosynthesis regulators glutamate-cysteine ligase catalytic subunit (GCLC) and solute carrier family 7 member 11 (SLC7A11). This activity of IRE1α is independent of its role in regulating the UPR and is evolutionarily conserved. Genetic deficiency and pharmacological inhibition of IRE1α have similar effects in inhibiting ferroptosis and reducing renal ischemia-reperfusion injury in mice. Our findings reveal a previously unidentified role of IRE1α to regulate ferroptosis and suggests inhibition of IRE1α as a promising therapeutic strategy to mitigate ferroptosis-associated pathological conditions.


Subject(s)
Amino Acid Transport System y+ , Endoribonucleases , Ferroptosis , Glutathione , Protein Serine-Threonine Kinases , Ferroptosis/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Animals , Humans , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Glutathione/metabolism , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/genetics , Unfolded Protein Response , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Male , Mice, Knockout
2.
Nat Biomed Eng ; 8(5): 593-610, 2024 May.
Article in English | MEDLINE | ID: mdl-38641710

ABSTRACT

Intracellular DNA sensors regulate innate immunity and can provide a bridge to adaptive immunogenicity. However, the activation of the sensors in antigen-presenting cells (APCs) by natural agonists such as double-stranded DNAs or cyclic nucleotides is impeded by poor intracellular delivery, serum stability, enzymatic degradation and rapid systemic clearance. Here we show that the hydrophobicity, electrostatic charge and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress in APCs. One of the three polypeptides that we engineered activated two major intracellular DNA-sensing pathways (cGAS-STING (for cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes) and Toll-like receptor 9) preferentially in APCs by promoting the release of mitochondrial DNA, which led to the efficient priming of effector T cells. In syngeneic mouse models of locally advanced and metastatic breast cancers, the polypeptides led to potent DNA-sensor-mediated antitumour responses when intravenously given as monotherapy or with immune checkpoint inhibitors. The activation of multiple innate immune pathways via engineered cationic polypeptides may offer therapeutic advantages in the generation of antitumour immune responses.


Subject(s)
Antigen-Presenting Cells , Immunity, Innate , Peptides , Animals , Immunity, Innate/drug effects , Peptides/chemistry , Peptides/pharmacology , Mice , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/drug effects , Humans , Female , Cations/chemistry , Mice, Inbred C57BL , Cell Line, Tumor , Toll-Like Receptor 9/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/chemistry
3.
J Clin Invest ; 133(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37824211

ABSTRACT

An immunosuppressive microenvironment causes poor tumor T cell infiltration and is associated with reduced patient overall survival in colorectal cancer. How to improve treatment responses in these tumors is still a challenge. Using an integrated screening approach to identify cancer-specific vulnerabilities, we identified complement receptor C5aR1 as a druggable target, which when inhibited improved radiotherapy, even in tumors displaying immunosuppressive features and poor CD8+ T cell infiltration. While C5aR1 is well-known for its role in the immune compartment, we found that C5aR1 is also robustly expressed on malignant epithelial cells, highlighting potential tumor cell-specific functions. C5aR1 targeting resulted in increased NF-κB-dependent apoptosis specifically in tumors and not normal tissues, indicating that, in malignant cells, C5aR1 primarily regulated cell fate. Collectively, these data revealed that increased complement gene expression is part of the stress response mounted by irradiated tumors and that targeting C5aR1 could improve radiotherapy, even in tumors displaying immunosuppressive features.


Subject(s)
Complement C5a , Receptors, Complement , Humans , Complement C5a/genetics , Receptors, Complement/genetics
4.
J Exp Med ; 219(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-35881112

ABSTRACT

Disease relapse and treatment-induced immunotoxicity pose significant clinical challenges for patients with hematological cancers. Here, we reveal distinctive requirements for neutralizing TNF receptor ligands APRIL and BAFF and their receptor activity in MM and DLBCL, impacting protein translation and production in MM cells and modulating the translation efficiency of the ATM interactor (ATMIN/ACSIZ). Therapeutically, we investigated the use of BCMA decoy receptor (sBCMA-Fc) as an inhibitor of APRIL and BAFF. While wild-type sBCMA-Fc effectively blocked APRIL signaling in MM, it lacked activity in DLBCL due to its weak BAFF binding. To expand the therapeutic utility of sBCMA-Fc, we engineered an affinity-enhanced mutant sBCMA-Fc fusion molecule (sBCMA-Fc V3) 4- and 500-fold stronger in binding to APRIL and BAFF, respectively. The mutant sBCMA-Fc V3 clone significantly enhanced antitumor activity against both MM and DLBCL. Importantly, we also demonstrated an adequate toxicity profile and on-target mechanism of action in nonhuman primate studies.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Multiple Myeloma , Animals , B-Cell Activating Factor/genetics , B-Cell Maturation Antigen/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/therapy , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Signal Transduction , Transmembrane Activator and CAML Interactor Protein , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics
5.
Phys Med Biol ; 67(16)2022 08 05.
Article in English | MEDLINE | ID: mdl-35853442

ABSTRACT

Objective. Irradiation with ultra-high dose rates (>40 Gy s-1), also known as FLASH irradiation, has the potential to shift the paradigm of radiation therapy because of its reduced toxicity to normal tissues compared to that of conventional irradiations. The goal of this study was to (1) achieve FLASH irradiation conditions suitable for pre-clinicalin vitroandin vivobiology experiments using our synchrotron-based proton beamline and (2) commission the FLASH irradiation conditions achieved.Approach. To achieve these suitable FLASH conditions, we made a series of adaptations to our proton beamline, including modifying the spill length and size of accelerating cycles, repurposing the reference monitor for dose control, and expanding the field size with a custom double-scattering system. We performed the dosimetric commissioning with measurements using an Advanced Markus chamber and EBT-XD films as well as with Monte Carlo simulations.Main results. Through adaptations, we have successfully achieved FLASH irradiation conditions, with an average dose rate of up to 375 Gy s-1. The Advanced Markus chamber was shown to be appropriate for absolute dose calibration under our FLASH conditions with a recombination factor ranging from 1.002 to 1.006 because of the continuous nature of our synchrotron-based proton delivery within a spill. Additionally, the absolute dose measured using the Advanced Markus chamber and EBT-XD films agreed well, with average and maximum differences of 0.32% and 1.63%, respectively. We also performed a comprehensive temporal analysis for FLASH spills produced by our system, which helped us identify a unique relationship between the average dose rate and the dose in our FLASH irradiation.Significance.We have established a synchrotron-based proton FLASH irradiation platform with accurate and precise dosimetry that is suitable for pre-clinical biology experiments. The unique time structure of the FLASH irradiation produced by our synchrotron-based system may shed new light onto the mechanism behind the FLASH effect.


Subject(s)
Proton Therapy , Protons , Proton Therapy/methods , Radiometry , Radiotherapy Dosage , Synchrotrons
6.
PNAS Nexus ; 1(2): pgac056, 2022 May.
Article in English | MEDLINE | ID: mdl-35707206

ABSTRACT

Adult salivary stem/progenitor cells (SSPC) have an intrinsic property to self-renew in order to maintain tissue architecture and homeostasis. Adult salivary glands have been documented to harbor SSPC, which have been shown to play a vital role in the regeneration of the glandular structures postradiation damage. We have previously demonstrated that activation of aldehyde dehydrogenase 3A1 (ALDH3A1) after radiation reduced aldehyde accumulation in SSPC, leading to less apoptosis and improved salivary function. We subsequently found that sustained pharmacological ALDH3A1 activation is critical to enhance regeneration of murine submandibular gland after radiation damage. Further investigation shows that ALDH3A1 function is crucial for SSPC self-renewal and survival even in the absence of radiation stress. Salivary glands from Aldh3a1 -/- mice have fewer acinar structures than wildtype mice. ALDH3A1 deletion or pharmacological inhibition in SSPC leads to a decrease in mitochondrial DNA copy number, lower expression of mitochondrial specific genes and proteins, structural abnormalities, lower membrane potential, and reduced cellular respiration. Loss or inhibition of ALDH3A1 also elevates ROS levels, depletes glutathione pool, and accumulates ALDH3A1 substrate 4-hydroxynonenal (4-HNE, a lipid peroxidation product), leading to decreased survival of murine SSPC that can be rescued by treatment with 4-HNE specific carbonyl scavengers. Our data indicate that ALDH3A1 activity protects mitochondrial function and is important for the regeneration activity of SSPC. This knowledge will help to guide our translational strategy of applying ALDH3A1 activators in the clinic to prevent radiation-related hyposalivation in head and neck cancer patients.

7.
Sci Adv ; 8(19): eabm6638, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35559673

ABSTRACT

Exploiting cancer vulnerabilities is critical for the discovery of anticancer drugs. However, tumor suppressors cannot be directly targeted because of their loss of function. To uncover specific vulnerabilities for cells with deficiency in any given tumor suppressor(s), we performed genome-scale CRISPR loss-of-function screens using a panel of isogenic knockout cells we generated for 12 common tumor suppressors. Here, we provide a comprehensive and comparative dataset for genetic interactions between the whole-genome protein-coding genes and a panel of tumor suppressor genes, which allows us to uncover known and new high-confidence synthetic lethal interactions. Mining this dataset, we uncover essential paralog gene pairs, which could be a common mechanism for interpreting synthetic lethality. Moreover, we propose that some tumor suppressors could be targeted to suppress proliferation of cells with deficiency in other tumor suppressors. This dataset provides valuable information that can be further exploited for targeted cancer therapy.


Subject(s)
Antineoplastic Agents , Neoplasms , CRISPR-Cas Systems , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genes, Tumor Suppressor , Humans , Neoplasms/genetics , Synthetic Lethal Mutations
8.
EMBO J ; 39(14): e104036, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32484965

ABSTRACT

Mechanistic understanding of how ionizing radiation induces type I interferon signaling and how to amplify this signaling module should help to maximize the efficacy of radiotherapy. In the current study, we report that inhibitors of the DNA damage response kinase ATR can significantly potentiate ionizing radiation-induced innate immune responses. Using a series of mammalian knockout cell lines, we demonstrate that, surprisingly, both the cGAS/STING-dependent DNA-sensing pathway and the MAVS-dependent RNA-sensing pathway are responsible for type I interferon signaling induced by ionizing radiation in the presence or absence of ATR inhibitors. The relative contributions of these two pathways in type I interferon signaling depend on cell type and/or genetic background. We propose that DNA damage-elicited double-strand DNA breaks releases DNA fragments, which may either activate the cGAS/STING-dependent pathway or-especially in the case of AT-rich DNA sequences-be transcribed and initiate MAVS-dependent RNA sensing and signaling. Together, our results suggest the involvement of two distinct pathways in type I interferon signaling upon DNA damage. Moreover, radiation plus ATR inhibition may be a promising new combination therapy against cancer.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/immunology , DNA Breaks, Double-Stranded/radiation effects , Interferon Type I/immunology , Radiation, Ionizing , Signal Transduction/radiation effects , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Line, Tumor , Humans , Interferon Type I/genetics , Signal Transduction/genetics , Signal Transduction/immunology
9.
Clin Cancer Res ; 26(12): 2972-2985, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32098769

ABSTRACT

PURPOSE: To investigate how induced tumor heterogeneity influences immune responses to radiotherapy with different proportions of mixed immune-responsive and unresponsive tumor cells in a triple-negative breast cancer model. It is hypothesized that studying the immune environment of mixed tumors and responses to radiotherapy could nominate immune active therapies to enhance immune responses after radiotherapy. EXPERIMENTAL DESIGN: Evaluate efficacy and immune responses generated by radiotherapy in tumors with different proportions of immunologically responsive and unresponsive tumor cells. Then study the cellular responses and transcriptomic differences between the tumors to nominate immunotherapy combinations with radiotherapy and evaluate the combination. RESULTS: The addition of the responsive cells to unresponsive tumors led to a greater than expected therapeutic response to radiotherapy with both innate and adaptive immune components. There was a distinct change in myeloid cells, greater inflammatory macrophage activity, and enhanced antigen presentation with responsive cells after radiotherapy. Because differences in matrix components, cell adhesion biology, and innate immune signaling correlated with myeloid cell response and phenotype, we hypothesized that radiotherapy combined with CD40 agonist antibody would sensitize unresponsive tumors. The combination therapy resulted in improved innate and adaptive immune response. Importantly, CD40 treatment increased tumor response to radiotherapy and protected against metastatic spread in a metastatic model. CONCLUSIONS: These data combined with transcriptomics from human patients support radiotherapy and myeloid cell targeting for immunologically cold tumors. The established study model presents opportunities to investigate the complex overlapping biologic mechanisms that limit immunotherapy and to implement radiotherapy with different immunotherapy combinations.


Subject(s)
Breast Neoplasms/pathology , Immunotherapy/mortality , Radioimmunotherapy/mortality , Radiotherapy/mortality , Animals , Apoptosis , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Cell Proliferation , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
J Clin Invest ; 129(12): 5553-5567, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31710313

ABSTRACT

Immune checkpoint inhibitors (ICIs), although promising, have variable benefit in head and neck cancer (HNC). We noted that tumor galectin-1 (Gal1) levels were inversely correlated with treatment response and survival in patients with HNC who were treated with ICIs. Using multiple HNC mouse models, we show that tumor-secreted Gal1 mediates immune evasion by preventing T cell migration into the tumor. Mechanistically, Gal1 reprograms the tumor endothelium to upregulate cell-surface programmed death ligand 1 (PD-L1) and galectin-9. Using genetic and pharmacological approaches, we show that Gal1 blockade increases intratumoral T cell infiltration, leading to a better response to anti-PD1 therapy with or without radiotherapy. Our study reveals the function of Gal1 in transforming the tumor endothelium into an immune-suppressive barrier and that its inhibition synergizes with ICIs.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Endothelium/physiology , Galectin 1/physiology , Head and Neck Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Animals , B7-H1 Antigen/physiology , Female , Galectin 1/antagonists & inhibitors , Galectins/physiology , Head and Neck Neoplasms/immunology , Humans , Immune Tolerance , Immunotherapy , Male , Mice , Mice, Inbred C57BL , Middle Aged , STAT1 Transcription Factor/physiology
11.
Clin Cancer Res ; 25(10): 2969-2974, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30723144

ABSTRACT

The development of cancers and their response to radiation are intricately linked to the tumor microenvironment (TME) in which they reside. Tumor cells, immune cells, and stromal cells interact with each other and are influenced by the microbiome and metabolic state of the host, and these interactions are constantly evolving. Stromal cells not only secrete extracellular matrix and participate in wound contraction, but they also secrete fibroblast growth factors (FGF), which mediate macrophage differentiation. Tumor-associated macrophages migrate to hypoxic areas and secrete vascular endothelial growth factor (VEGF) to promote angiogenesis. The microbiome and its byproducts alter the metabolic milieu by shifting the balance between glucose utilization and fatty acid oxidation, and these changes subsequently influence the immune response in the TME. Not only does radiation exert cell-autonomous effects on tumor cells, but it influences both the tumor-promoting and tumor-suppressive components in the TME. To gain a deeper understanding of how the TME influences the response to radiation, the American Society for Radiation Oncology and the American Association of Cancer Research organized a scientific workshop on July 26-27, 2018, to discuss how the microbiome, the immune response, the metabolome, and the stroma all shift the balance between radiosensitivity and radioresistance. The proceedings from this workshop are discussed here and highlight recent discoveries in the field, as well as the most important areas for future research.


Subject(s)
Neoplasms/pathology , Neoplasms/radiotherapy , Radiation Oncology , Tumor Microenvironment/radiation effects , Disease Management , Humans , Immunomodulation/radiation effects , Neoplasms/immunology , Radiation Oncology/methods , Risk Factors , Stromal Cells/immunology , Stromal Cells/metabolism , Stromal Cells/radiation effects , Treatment Outcome , Tumor Microenvironment/immunology
12.
Proc Natl Acad Sci U S A ; 115(24): 6279-6284, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29794221

ABSTRACT

Xerostomia (dry mouth) is the most common side effect of radiation therapy in patients with head and neck cancer and causes difficulty speaking and swallowing. Since aldehyde dehydrogenase 3A1 (ALDH3A1) is highly expressed in mouse salivary stem/progenitor cells (SSPCs), we sought to determine the role of ALDH3A1 in SSPCs using genetic loss-of-function and pharmacologic gain-of-function studies. Using DarkZone dye to measure intracellular aldehydes, we observed higher aldehyde accumulation in irradiated Aldh3a1-/- adult murine salisphere cells and in situ in whole murine embryonic salivary glands enriched in SSPCs compared with wild-type glands. To identify a safe ALDH3A1 activator for potential clinical testing, we screened a traditional Chinese medicine library and isolated d-limonene, commonly used as a food-flavoring agent, as a single constituent activator. ALDH3A1 activation by d-limonene significantly reduced aldehyde accumulation in SSPCs and whole embryonic glands, increased sphere-forming ability, decreased apoptosis, and improved submandibular gland structure and function in vivo after radiation. A phase 0 study in patients with salivary gland tumors showed effective delivery of d-limonene into human salivary glands following daily oral dosing. Given its safety and bioavailability, d-limonene may be a good clinical candidate for mitigating xerostomia in patients with head and neck cancer receiving radiation therapy.


Subject(s)
Aldehyde Dehydrogenase/metabolism , Aldehydes/metabolism , Cyclohexenes/pharmacology , Radiotherapy/adverse effects , Salivary Glands/metabolism , Terpenes/pharmacology , Xerostomia/metabolism , Animals , Apoptosis/drug effects , Female , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/radiotherapy , Limonene , Medicine, Chinese Traditional/methods , Mice , Mice, Inbred C57BL , Protective Agents/pharmacology , Salivary Glands/drug effects , Salivary Glands/radiation effects , Stem Cells/drug effects , Stem Cells/metabolism , Submandibular Gland/drug effects , Submandibular Gland/metabolism , Xerostomia/drug therapy
13.
Mol Cancer Res ; 16(5): 745-753, 2018 05.
Article in English | MEDLINE | ID: mdl-29440447

ABSTRACT

Activation of the unfolded protein response (UPR) signaling pathways is linked to multiple human diseases, including cancer. The inositol-requiring kinase 1α (IRE1α)-X-box binding protein 1 (XBP1) pathway is the most evolutionarily conserved of the three major signaling branches of the UPR. Here, we performed a genome-wide siRNA screen to obtain a systematic assessment of genes integrated in the IRE1α-XBP1 axis. We monitored the expression of an XBP1-luciferase chimeric protein in which luciferase was fused in-frame with the spliced (active) form of XBP1. Using cells expressing this reporter construct, we identified 162 genes for which siRNA inhibition resulted in alteration in XBP1 splicing. These genes express diverse types of proteins modulating a wide range of cellular processes. Pathway analysis identified a set of genes implicated in the pathogenesis of breast cancer. Several genes, including BCL10, GCLM, and IGF1R, correlated with worse relapse-free survival (RFS) in an analysis of patients with triple-negative breast cancer (TNBC). However, in this cohort of 1,908 patients, only high GCLM expression correlated with worse RFS in both TNBC and non-TNBC patients. Altogether, our study revealed unidentified roles of novel pathways regulating the UPR, and these findings may serve as a paradigm for exploring novel therapeutic opportunities based on modulating the UPR.Implications: Genome-wide RNAi screen identifies novel genes/pathways that modulate IRE1α-XBP1 signaling in human tumor cells and leads to the development of improved therapeutic approaches targeting the UPR.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/16/5/745/F1.large.jpg Mol Cancer Res; 16(5); 745-53. ©2018 AACR.


Subject(s)
Genome, Human/genetics , X-Box Binding Protein 1/genetics , Humans , RNA Interference , Transfection
14.
J Chem Inf Model ; 57(4): 875-882, 2017 04 24.
Article in English | MEDLINE | ID: mdl-28257191

ABSTRACT

We describe a new library generation method, Machine-based Identification of Molecules Inside Characterized Space (MIMICS), that generates sets of molecules inspired by a text-based input. MIMICS-generated libraries were found to preserve distributions of properties while simultaneously increasing structural diversity. Newly identified MIMICS-generated compounds were found to be bioactive as inhibitors of specific components of the unfolded protein response (UPR) and the VEGFR2 pathway in cell-based assays, thus confirming the applicability of this methodology toward drug design applications. Wider application of MIMICS could facilitate the efficient utilization of chemical space.


Subject(s)
Drug Discovery/methods , Neural Networks, Computer , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
15.
JCO Precis Oncol ; 20172017.
Article in English | MEDLINE | ID: mdl-29888341

ABSTRACT

PURPOSE: Triple-negative breast cancers (TNBCs) are associated with a worse prognosis and patients with TNBC have fewer therapeutic options than patients with non-TNBC. Recently, the IRE1α-XBP1 branch of the unfolded protein response (UPR) was implicated in TNBC prognosis on the basis of a relatively small patient population, suggesting the diagnostic and therapeutic value of this pathway in TNBCs. In addition, the IRE1α-XBP1 and hypoxia-induced factor 1 α (HIF1α) pathways have been identified as interacting partners in TNBC, suggesting a novel mechanism of regulation. To comprehensively evaluate and validate these findings, we investigated the relative activities and relevance to patient survival of the UPR and HIF1α pathways in different breast cancer subtypes in large populations of patients. MATERIALS AND METHODS: We performed a comprehensive analysis of gene expression and survival data from large cohorts of patients with breast cancer. The patients were stratified based on the average expression of the UPR or HIF1α gene signatures. RESULTS: We identified a strong positive association between the XBP1 gene signature and estrogen receptor-positive status or the HIF1α gene signature, as well as the predictive value of the XBP1 gene signature for survival of patients who are estrogen receptor negative, or have TNBC or HER2+. In contrast, another important UPR branch, the ATF4/CHOP pathway, lacks prognostic value in breast cancer in general. Activity of the HIF1α pathway is correlated with patient survival in all the subtypes evaluated. CONCLUSION: These findings clarify the relevance of the UPR pathways in different breast cancer subtypes and underscore the potential therapeutic importance of the IRE1α-XBP1 branch in breast cancer treatment.

16.
Wound Repair Regen ; 25(6): 964-971, 2017 11.
Article in English | MEDLINE | ID: mdl-29316036

ABSTRACT

Wound healing is characterized by the production of large amounts of protein necessary to replace lost cellular mass and extracellular matrix. The unfolded protein response (UPR) is an important adaptive cellular response to increased protein synthesis. One of the main components of the UPR is IRE1, an endoplasmic reticulum transmembrane protein with endonuclease activity that produces the activated form of the transcription factor XBP1. Using luciferase reporter mice for Xbp1 splicing, we showed that IRE1 was up-regulated during excisional wound healing at the time in wound healing consistent with that of the proliferative phase, when the majority of protein synthesis for cellular proliferation and matrix deposition occurs. Furthermore, using a small molecule inhibitor of IRE1 we demonstrated that inhibition of IRE1 led to decreased scar formation in treated mice. Results were recapitulated in a hypertrophic scar mouse model. These data help provide a cellular pathway to target in the treatment of hypertrophic scarring and keloid disorders.


Subject(s)
Cicatrix, Hypertrophic/metabolism , Cicatrix/metabolism , Membrane Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , X-Box Binding Protein 1/metabolism , Animals , Cell Proliferation , Extracellular Matrix/metabolism , Membrane Proteins/antagonists & inhibitors , Mice , Protein Serine-Threonine Kinases/antagonists & inhibitors , Unfolded Protein Response , Up-Regulation , Wound Healing
17.
J Clin Invest ; 127(1): 183-198, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27893463

ABSTRACT

The AXL receptor and its activating ligand, growth arrest-specific 6 (GAS6), are important drivers of metastasis and therapeutic resistance in human cancers. Given the critical roles that GAS6 and AXL play in refractory disease, this signaling axis represents an attractive target for therapeutic intervention. However, the strong picomolar binding affinity between GAS6 and AXL and the promiscuity of small molecule inhibitors represent important challenges faced by current anti-AXL therapeutics. Here, we have addressed these obstacles by engineering a second-generation, high-affinity AXL decoy receptor with an apparent affinity of 93 femtomolar to GAS6. Our decoy receptor, MYD1-72, profoundly inhibited disease progression in aggressive preclinical models of human cancers and induced cell killing in leukemia cells. When directly compared with the most advanced anti-AXL small molecules in the clinic, MYD1-72 achieved superior antitumor efficacy while displaying no toxicity. Moreover, we uncovered a relationship between AXL and the cellular response to DNA damage whereby abrogation of AXL signaling leads to accumulation of the DNA-damage markers γH2AX, 53BP1, and RAD51. MYD1-72 exploited this relationship, leading to improvements upon the therapeutic index of current standard-of-care chemotherapies in preclinical models of advanced pancreatic and ovarian cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Leukemia/drug therapy , Neoplasms, Experimental/drug therapy , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , Animals , Biomarkers, Tumor/genetics , Cell Line, Tumor , Histones/genetics , Histones/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Leukemia/metabolism , Mice , Mice, Nude , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
18.
Nat Commun ; 7: 13898, 2016 12 23.
Article in English | MEDLINE | ID: mdl-28008921

ABSTRACT

Increasing evidence suggests that ionizing radiation therapy (RT) in combination with checkpoint immunotherapy is highly effective in treating a subset of cancers. To better understand the limited responses to this combination we analysed the genetic, microenvironmental, and immune factors in tumours derived from a transgenic breast cancer model. We identified two tumours with similar growth characteristics but different RT responses primarily due to an antitumour immune response. The combination of RT and checkpoint immunotherapy resulted in cures in the responsive but not the unresponsive tumours. Profiling the tumours revealed that the Axl receptor tyrosine kinase is overexpressed in the unresponsive tumours, and Axl knockout resulted in slower growth and increased radiosensitivity. These changes were associated with a CD8+ T-cell response, which was improved in combination with checkpoint immunotherapy. These results suggest a novel role for Axl in suppressing antigen presentation through MHCI, and enhancing cytokine release, which promotes a suppressive myeloid microenvironment.


Subject(s)
Molecular Targeted Therapy , Neoplasms/enzymology , Neoplasms/immunology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Tumor Microenvironment/immunology , Tumor Microenvironment/radiation effects , Animals , Cell Line, Tumor , Cell Proliferation , Combined Modality Therapy , Cytokines/metabolism , Histocompatibility Antigens Class I/metabolism , Immunity , Immunosuppression Therapy , Immunotherapy , Mice, Inbred C57BL , Mice, Transgenic , Models, Biological , Radiation Tolerance/radiation effects , Axl Receptor Tyrosine Kinase
19.
Sci Rep ; 6: 33353, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27634301

ABSTRACT

Activation of the IRE1α-XBP1 branch of the unfolded protein response (UPR) has been implicated in multiple types of human cancers, including multiple myeloma (MM). Through an in silico drug discovery approach based on protein-compound virtual docking, we identified the anthracycline antibiotic doxorubicin as an in vitro and in vivo inhibitor of XBP1 activation, a previously unknown activity for this widely utilized cancer chemotherapeutic drug. Through a series of mechanistic and phenotypic studies, we showed that this novel activity of doxorubicin was not due to inhibition of topoisomerase II (Topo II). Consistent with its inhibitory activity on the IRE1α-XBP1 branch of the UPR, doxorubicin displayed more potent cytotoxicity against MM cell lines than other cancer cell lines that have lower basal IRE1α-XBP1 activity. In addition, doxorubicin significantly inhibited XBP1 activation in CD138(+) tumor cells isolated from MM patients. Our findings suggest that the UPR-modulating activity of doxorubicin may be utilized clinically to target IRE1α-XBP1-dependent tumors such as MM.


Subject(s)
Doxorubicin/pharmacology , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Unfolded Protein Response/drug effects , X-Box Binding Protein 1/metabolism , Cell Death/drug effects , Cell Line, Tumor , Doxorubicin/chemistry , Etoposide/chemistry , Etoposide/pharmacology , Humans , RNA Splicing/genetics , Topoisomerase Inhibitors/pharmacology
20.
Mol Cancer Ther ; 15(9): 2055-65, 2016 09.
Article in English | MEDLINE | ID: mdl-27307600

ABSTRACT

Using a luciferase reporter-based high-throughput chemical library screen and topological data analysis, we identified N-acridine-9-yl-N',N'-dimethylpropane-1,3-diamine (DAPA) as an inhibitor of the inositol requiring kinase 1α (IRE1α)-X-box binding protein-1 (XBP1) pathway of the unfolded protein response. We designed a collection of analogues based on the structure of DAPA to explore structure-activity relationships and identified N(9)-(3-(dimethylamino)propyl)-N(3),N(3),N(6),N(6)-tetramethylacridine-3,6,9-triamine (3,6-DMAD), with 3,6-dimethylamino substitution on the chromophore, as a potent inhibitor. 3,6-DMAD inhibited both IRE1α oligomerization and in vitro endoribonuclease (RNase) activity, whereas the other analogues only blocked IRE1α oligomerization. Consistent with the inhibition of IRE1α-mediated XBP1 splicing, which is critical for multiple myeloma cell survival, these analogues were cytotoxic to multiple myeloma cell lines. Furthermore, 3,6-DMAD inhibited XBP1 splicing in vivo and the growth of multiple myeloma tumor xenografts. Our study not only confirmed the utilization of topological data analysis in drug discovery but also identified a class of compounds with a unique mechanism of action as potent IRE1α-XBP1 inhibitors in the treatment of multiple myeloma. Mol Cancer Ther; 15(9); 2055-65. ©2016 AACR.


Subject(s)
Acridines/pharmacology , Antineoplastic Agents/pharmacology , Endoribonucleases/metabolism , Multiple Myeloma/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , X-Box Binding Protein 1/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cluster Analysis , Disease Models, Animal , Drug Discovery , Drug Screening Assays, Antitumor , Endoribonucleases/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , High-Throughput Screening Assays , Humans , Mice , Multiple Myeloma/genetics , Protein Serine-Threonine Kinases/genetics , X-Box Binding Protein 1/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL