Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
1.
J Cancer ; 15(13): 4219-4231, 2024.
Article in English | MEDLINE | ID: mdl-38947379

ABSTRACT

Background: Hepatocellular carcinoma (HCC), the predominant malignancy of the digestive tract, ranks as the third most common cause of cancer-related mortality globally, significantly impeding human health and lifespan. Emerging immunotherapeutic approaches have ignited fresh optimism for patient outcomes. This investigation probes the link between 731 immune cell phenotypes and HCC through Mendelian Randomization and single-cell sequencing, aiming to unearth viable drug targets and dissect HCC's etiology. Methods: We conducted an exhaustive two-sample Mendelian Randomization analysis to ascertain the causal links between immune cell features and HCC, utilizing publicly accessible genetic datasets to explore the causal connections of 731 immune cell traits with HCC susceptibility. The integrity, diversity, and potential horizontal pleiotropy of these findings were rigorously assessed through extensive sensitivity analyses. Furthermore, single-cell sequencing was employed to penetrate the pathogenic underpinnings of HCC. Results: Establishing a significance threshold of pval_Inverse.variance.weighted at 0.05, our study pinpointed five immune characteristics potentially elevating HCC risk: B cell % CD3- lymphocyte (TBNK panel), CD25 on IgD+ (B cell panel), HVEM on TD CD4+ (Maturation stages of T cell panel), CD14 on CD14+ CD16- monocyte (Monocyte panel), CD4 on CD39+ activated Treg ( Treg panel). Conversely, various cellular phenotypes tied to BAFF-R expression emerged as protective elements. Single-cell sequencing unveiled profound immune cell phenotype interactions, highlighting marked disparities in cell communication and metabolic activities. Conclusion: Leveraging MR and scRNA-seq techniques, our study elucidates potential associations between 731 immune cell phenotypes and HCC, offering a window into the molecular interplays among cellular phenotypes, and addressing the limitations of mono-antibody therapeutic targets.

2.
Anal Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979898

ABSTRACT

An effective tool to assess embryo quality in the assisted reproduction clinical practice will enhance successful implantation rates and mitigate high risks of multiple pregnancies. Potential biomarkers secreted into culture medium (CM) during embryo development enable rapid and noninvasive methods of assessing embryo quality. However, small volumes, low biomolecule concentrations, and impurity interference collectively preclude the identification of quality-related biomarkers in single blastocyst CM. Here, we developed a noninvasive trace multiomics approach to screen for potential markers in individual human blastocyst CM. We collected 84 CM samples and divided them into high-quality (HQ) and low-quality (LQ) groups. We evaluated the differentially expressed proteins (DEPs) and metabolites (DEMs) in HQ and LQ CM. A total of 504 proteins and 189 metabolites were detected in individual blastocyst CM. Moreover, 9 DEPs and 32 DEMs were identified in different quality embryo CM. We also categorized HQ embryos into positive implantation (PI) and negative implantation (NI) groups based on ultrasound findings on day 28. We identified 41 DEPs and 4 DEMs associated with clinical implantation outcomes in morphologically HQ embryos using a multiomics analysis approach. This study provides a noninvasive multiomics analysis technique and identifies potential biomarkers for clinical embryo developmental quality assessment.

3.
Front Immunol ; 15: 1400431, 2024.
Article in English | MEDLINE | ID: mdl-38994370

ABSTRACT

Background: Clear Cell Renal Cell Carcinoma (ccRCC) is the most common type of kidney cancer, characterized by high heterogeneity and complexity. Recent studies have identified mitochondrial defects and autophagy as key players in the development of ccRCC. This study aims to delve into the changes in mitophagic activity within ccRCC and its impact on the tumor microenvironment, revealing its role in tumor cell metabolism, development, and survival strategies. Methods: Comprehensive analysis of ccRCC tumor tissues using single cell sequencing and spatial transcriptomics to reveal the role of mitophagy in ccRCC. Mitophagy was determined to be altered among renal clear cells by gene set scoring. Key mitophagy cell populations and key prognostic genes were identified using NMF analysis and survival analysis approaches. The role of UBB in ccRCC was also demonstrated by in vitro experiments. Results: Compared to normal kidney tissue, various cell types within ccRCC tumor tissues exhibited significantly increased levels of mitophagy, especially renal clear cells. Key genes associated with increased mitophagy levels, such as UBC, UBA52, TOMM7, UBB, MAP1LC3B, and CSNK2B, were identified, with their high expression closely linked to poor patient prognosis. Particularly, the ubiquitination process involving the UBB gene was found to be crucial for mitophagy and its quality control. Conclusion: This study highlights the central role of mitophagy and its regulatory factors in the development of ccRCC, revealing the significance of the UBB gene and its associated ubiquitination process in disease progression.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Mitophagy , Single-Cell Analysis , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Mitophagy/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Single-Cell Analysis/methods , Gene Expression Profiling , Transcriptome , Tumor Microenvironment/genetics , Gene Expression Regulation, Neoplastic , Prognosis , Biomarkers, Tumor/genetics , Cell Line, Tumor
4.
Nat Commun ; 15(1): 5752, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982135

ABSTRACT

The early-life organ development and maturation shape the fundamental blueprint for later-life phenotype. However, a multi-organ proteome atlas from infancy to adulthood is currently not available. Herein, we present a comprehensive proteomic analysis of ten mouse organs (brain, heart, lung, liver, kidney, spleen, stomach, intestine, muscle and skin) at three crucial developmental stages (1-, 4- and 8-weeks after birth) acquired using data-independent acquisition mass spectrometry. We detect and quantify 11,533 protein groups across the ten organs and obtain 115 age-related differentially expressed protein groups that are co-expressed in all organs from infancy to adulthood. We find that spliceosome proteins prevalently play crucial regulatory roles in the early-life development of multiple organs, and detect organ-specific expression patterns and sexual dimorphism. This multi-organ proteome atlas provides a fundamental resource for understanding the molecular mechanisms underlying early-life organ development and maturation.


Subject(s)
Proteome , Proteomics , Animals , Proteome/metabolism , Mice , Female , Male , Proteomics/methods , Kidney/metabolism , Kidney/growth & development , Spliceosomes/metabolism , Organ Specificity , Mice, Inbred C57BL , Brain/metabolism , Brain/growth & development , Liver/metabolism , Lung/metabolism , Lung/growth & development , Gene Expression Regulation, Developmental , Sex Characteristics , Spleen/metabolism , Spleen/growth & development
5.
Adv Mater ; : e2401559, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958107

ABSTRACT

Label-free proteomics is widely used to identify disease mechanism and potential therapeutic targets. However, deep proteomics with ultratrace clinical specimen remains a major technical challenge due to extensive contact loss during complex sample pretreatment. Here, a hybrid of four boronic acid-rich lanthanide metal-organic frameworks (MOFs) with high protein affinity is introduced to capture proteins in ultratrace samples jointly by nitrogen-boronate complexation, cation-π and ionic interactions. A MOFs Aided Sample Preparation (MASP) workflow that shrinks sample volume and integrates lysis, protein capture, protein digestion and peptide collection steps into a single PCR tube to minimize sample loss caused by non-specific absorption, is proposed further. MASP is validated to quantify ≈1800 proteins in 10 HEK-293T cells. MASP is applied to profile cerebrospinal fluid (CSF) proteome from cerebral stroke and brain damaged patients, and identified ≈3700 proteins in 1 µL CSF. MASP is further demonstrated to detect ≈9600 proteins in as few as 50 µg mouse brain tissues. MASP thus enables deep, scalable, and reproducible proteome on precious clinical samples with low abundant proteins.

7.
Genet Epidemiol ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38887957

ABSTRACT

Instrumental variable (IV) analysis has been widely applied in epidemiology to infer causal relationships using observational data. Genetic variants can also be viewed as valid IVs in Mendelian randomization and transcriptome-wide association studies. However, most multivariate IV approaches cannot scale to high-throughput experimental data. Here, we leverage the flexibility of our previous work, a hierarchical model that jointly analyzes marginal summary statistics (hJAM), to a scalable framework (SHA-JAM) that can be applied to a large number of intermediates and a large number of correlated genetic variants-situations often encountered in modern experiments leveraging omic technologies. SHA-JAM aims to estimate the conditional effect for high-dimensional risk factors on an outcome by incorporating estimates from association analyses of single-nucleotide polymorphism (SNP)-intermediate or SNP-gene expression as prior information in a hierarchical model. Results from extensive simulation studies demonstrate that SHA-JAM yields a higher area under the receiver operating characteristics curve (AUC), a lower mean-squared error of the estimates, and a much faster computation speed, compared to an existing approach for similar analyses. In two applied examples for prostate cancer, we investigated metabolite and transcriptome associations, respectively, using summary statistics from a GWAS for prostate cancer with more than 140,000 men and high dimensional publicly available summary data for metabolites and transcriptomes.

8.
Angew Chem Int Ed Engl ; : e202406843, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828878

ABSTRACT

Uropathogenic Escherichia coli (UPECs) is a leading cause for urinary tract infections (UTI), accounting for 70-90% of community or hospital-acquired bacterial infections owing to high recurrence, imprecision in diagnosis and management, and increasing prevalence of antibiotic resistance. Current methods for clinical UPECs detection still rely on labor-intensive urine cultures that impede rapid and accurate diagnosis for timely UTI therapeutic management. Herein, we developed a first-in-class near-infrared (NIR) UPECs fluorescent probe (NO-AH) capable of specifically targeting UPECs through its collaborative response to bacterial enzymes, enabling locoregional imaging of UTIs both in vitro and in vivo. Our NO-AH probe incorporates a dual protease activatable moiety, which first reacts with OmpT, an endopeptidase abundantly present on outer membrane of UPECs, releasing an intermediate amino acid residue conjugated with a NIR hemicyanine fluorophore. Such liberated fragment would be subsequently recognized by aminopeptidase (APN) within periplasm of UPECs, activating localized fluorescence for precise imaging of UTIs in complex living environments. The peculiar specificity and selectivity of NO-AH, facilitated by the collaborative action of bacterial enzymes, features a timely and accurate identification of UPECs-infected UTIs, which could overcome misdiagnosis in conventional urine tests, thus opening new avenues towards reliable UTI diagnosis and personalized antimicrobial therapy management.

9.
Immun Ageing ; 21(1): 38, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877498

ABSTRACT

Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.

10.
J Control Release ; 370: 691-706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723671

ABSTRACT

Vaccination is essential for preventing and controlling infectious diseases, along with reducing mortality. Developing safe and versatile adjuvants to enhance humoral and cellular immune responses to vaccines remains a key challenge in vaccine development. Here, we designed hierarchical mesoporous MOF-801 (HM801) using a Cocamidopropyl betaine (CAPB) and a Pluronics F127 in an aqueous phase system. Meanwhile, we synthesized a novel SARS-CoV-2 nanovaccine (R@M@HM801) with a high loading capacity for both the STING agonist (MSA-2) and the Delta receptor binding domain (Delta-RBD) antigen. R@M@HM801 enhanced MSA-2 and RBD utilization and effectively co-delivered MSA-2 and RBD antigens to antigen-presenting cells in the draining lymph nodes, thereby promoting the activation of both T and B cells. Lymphocyte single-cell analysis showed that R@M@HM801 stimulated robust CD11b+CD4+ T cells, CXCR5+CD4+ T follicular helper (Tfh), and durable CD4+CD44+CD62L-, CD8+CD44+CD62L- effector memory T cell (TEM) immune responses, and promoted the proliferative activation of CD26+ B cells in vivo. Meanwhile, R@M@HM801 induced stronger specific antibodies and neutralization of pseudovirus against Delta compared to the RBD + MAS-2 and RBD + MAS-2 + Alum vaccines. Our study demonstrated the efficacy of a hierarchical mesoporous HM801 and its potential immune activation mechanism in enhancing adaptive immune responses against viruses and other diseases.


Subject(s)
Adjuvants, Immunologic , Immunity, Cellular , Immunity, Humoral , Membrane Proteins , Metal-Organic Frameworks , Animals , Immunity, Humoral/drug effects , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Immunity, Cellular/drug effects , Membrane Proteins/immunology , Mice , Metal-Organic Frameworks/chemistry , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , Mice, Inbred BALB C , Porosity , Mice, Inbred C57BL , B-Lymphocytes/immunology , B-Lymphocytes/drug effects
11.
Cell Rep Med ; 5(6): 101580, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38776913

ABSTRACT

Natural killer (NK) cell-based immunotherapy holds promise for cancer treatment; however, its efficacy remains limited, necessitating the development of alternative strategies. Here, we report that venetoclax, an FDA-approved BCL-2 inhibitor, directly activates NK cells, enhancing their cytotoxicity against acute myeloid leukemia (AML) both in vitro and in vivo, likely independent of BCL-2 inhibition. Through comprehensive approaches, including bulk and single-cell RNA sequencing, avidity measurement, and functional assays, we demonstrate that venetoclax increases the avidity of NK cells to AML cells and promotes lytic granule polarization during immunological synapse (IS) formation. Notably, we identify a distinct CD161lowCD218b+ NK cell subpopulation that exhibits remarkable sensitivity to venetoclax treatment. Furthermore, venetoclax promotes mitochondrial respiration and ATP synthesis via the NF-κB pathway, thereby facilitating IS formation in NK cells. Collectively, our findings establish venetoclax as a multifaceted immunometabolic modulator of NK cell function and provide a promising strategy for augmenting NK cell-based cancer immunotherapy.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Immunotherapy, Adoptive , Killer Cells, Natural , Leukemia, Myeloid, Acute , Sulfonamides , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Humans , Sulfonamides/pharmacology , Animals , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Mice , Immunotherapy, Adoptive/methods , Cell Line, Tumor , NF-kappa B/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice, Inbred NOD
12.
Front Neurol ; 15: 1374542, 2024.
Article in English | MEDLINE | ID: mdl-38765261

ABSTRACT

Purpose: Traditional Chinese medicine (TCM) therapies, especially acupuncture, have received increasing attention in the field of pain management. This meta-analysis evaluated the effectiveness of acupuncture in the treatment of myofascial pain syndrome. Methods: A comprehensive search was conducted across a number of databases, including PubMed, Cochrane Library, WOS, CNKI, WANFANG, Sinomed, and VIP. Furthermore, articles of studies published from the inception of these databases until November 22, 2023, were examined. This systematic review and meta-analysis encompassed all randomized controlled trials (RCTs) on acupuncture for myofascial pain syndromes, without language or date restrictions. Based on the mean difference (MD) of symptom change, we critically assessed the outcomes reported in these trials. The quality of evidence was assessed using the Cochrane Risk of Bias Tool. The study is registered with PROSPERO under registration number CRD42023484933. Results: Our analysis included 10 RCTs in which 852 patients were divided into two groups: an acupuncture group (427) and a control group (425). The results of the study showed that acupuncture was significantly more effective than the control group in treating myofascial pain syndromes, which was reflected in a greater decrease in VAS scores (MD = -1.29, 95% [-1.65, -0.94], p < 0.00001). In addition, the improvement in PRI and PPI was more pronounced in the acupuncture group (PRI: MD = -2.04, 95% [-3.76, -0.32], p = 0.02) (PPI: MD = -1.03, 95% [-1.26, -0.79], p < 0.00001) compared to the control group. These results suggest that acupuncture is effective in reducing myofascial pain. It is necessary to further study the optimal acupoints and treatment time to achieve the best therapeutic effect. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023484933.

13.
Pharmaceutics ; 16(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794294

ABSTRACT

A nanoparticle's shape is a critical determinant of its biological interactions and therapeutic effectiveness. This study investigates the influence of shape on the performance of mesoporous silica nanoparticles (MSNs) in anticancer therapy. MSNs with spherical, rod-like, and hexagonal-plate-like shapes were synthesized, with particle sizes of around 240 nm, and their other surface properties were characterized. The drug loading capacities of the three shapes were controlled to be 47.46%, 49.41%, and 46.65%, respectively. The effects of shape on the release behaviors, cellular uptake mechanisms, and pharmacological behaviors of MSNs were systematically investigated. Through a series of in vitro studies using 4T1 cells and in vivo evaluations in 4T1 tumor-bearing mice, the release kinetics, cellular behaviors, pharmacological effects, circulation profiles, and therapeutic efficacy of MSNs were comprehensively assessed. Notably, hexagonal-plate-shaped MSNs loaded with PTX exhibited a prolonged circulation time (t1/2 = 13.59 ± 0.96 h), which was approximately 1.3 times that of spherical MSNs (t1/2 = 10.16 ± 0.38 h) and 1.5 times that of rod-shaped MSNs (t1/2 = 8.76 ± 1.37 h). This research underscores the significance of nanoparticles' shapes in dictating their biological interactions and therapeutic outcomes, providing valuable insights for the rational design of targeted drug delivery systems in cancer therapy.

14.
Crit Rev Biomed Eng ; 52(4): 1-15, 2024.
Article in English | MEDLINE | ID: mdl-38780102

ABSTRACT

Computer assisted diagnostic technology has been widely used in clinical practice, specifically focusing on medical image segmentation. Its purpose is to segment targets with certain special meanings in medical images and extract relevant features, providing reliable basis for subsequent clinical diagnosis and research. However, because of different shapes and complex structures of segmentation targets in different medical images, some imaging techniques have similar characteristics, such as intensity, color, or texture, for imaging different organs and tissues. The localization and segmentation of targets in medical images remains an urgent technical challenge to be solved. As such, an improved full scale skip connection network structure for the CT liver image segmentation task is proposed. This structure includes a biomimetic attention module between the shallow encoder and the deep decoder, and the feature fusion proportion coefficient between the two is learned to enhance the attention of the overall network to the segmented target area. In addition, based on the traditional point sampling mechanism, an improved point sampling strategy is proposed for characterizing medical images to further enhance the edge segmentation effect of CT liver targets. The experimental results on the commonly used combined (CT-MR) health absolute organ segmentation (CHAOS) dataset show that the average dice similarity coefficient (DSC) can reach 0.9467, the average intersection over union (IOU) can reach 0.9623, and the average F1 score can reach 0.9351. This indicates that the model can effectively learn image detail features and global structural features, leading to improved segmentation of liver images.


Subject(s)
Image Processing, Computer-Assisted , Liver , Tomography, X-Ray Computed , Humans , Algorithms , Diagnostic Imaging/methods , Image Processing, Computer-Assisted/methods , Liver/diagnostic imaging , Neural Networks, Computer , Tomography, X-Ray Computed/methods
15.
Front Cell Dev Biol ; 12: 1403396, 2024.
Article in English | MEDLINE | ID: mdl-38813086

ABSTRACT

PHD (plant homeodomain) finger proteins emerge as central epigenetic readers and modulators in cancer biology, orchestrating a broad spectrum of cellular processes pivotal to oncogenesis and tumor suppression. This review delineates the dualistic roles of PHD fingers in cancer, highlighting their involvement in chromatin remodeling, gene expression regulation, and interactions with cellular signaling networks. PHD fingers' ability to interpret specific histone modifications underscores their influence on gene expression patterns, impacting crucial cancer-related processes such as cell proliferation, DNA repair, and apoptosis. The review delves into the oncogenic potential of certain PHD finger proteins, exemplified by PHF1 and PHF8, which promote tumor progression through epigenetic dysregulation and modulation of signaling pathways like Wnt and TGFß. Conversely, it discusses the tumor-suppressive functions of PHD finger proteins, such as PHF2 and members of the ING family, which uphold genomic stability and inhibit tumor growth through their interactions with chromatin and transcriptional regulators. Additionally, the review explores the therapeutic potential of targeting PHD finger proteins in cancer treatment, considering their pivotal roles in regulating cancer stem cells and influencing the immune response to cancer therapy. Through a comprehensive synthesis of current insights, this review underscores the complex but promising landscape of PHD finger proteins in cancer biology, advocating for further research to unlock novel therapeutic avenues that leverage their unique cellular roles.

17.
PLoS One ; 19(5): e0297788, 2024.
Article in English | MEDLINE | ID: mdl-38743661

ABSTRACT

This study was conducted to evaluate the effects of phytosterols (PS) and phytosterol esters (PSE) on C57BL/6 mice. Three groups of 34 six-week-old C57BL/6 mice of specific pathogen free (SPF) grade, with an average initial body weight (IBW) of 17.7g, were fed for 24 days either natural-ingredient diets without supplements or diets supplemented with 89 mg/kg PS or diets supplemented with 400 mg/kg PSE. Growth performance, blood biochemistry, liver and colon morphology as well as intestinal flora status were evaluated. Both PS and PSE exhibited growth promotion and feed digestibility in mice. In blood biochemistry, the addition of both PS and PSE to the diet resulted in a significant decrease in Total Cholesterol (TC) and Triglyceride (TG) levels and an increase in Superoxide Dismutase (SOD) activity. No significant changes in liver and intestinal morphology were observed. Both increased the level of Akkermansia in the intestinal tract of mice. There was no significant difference between the effects of PS and PSE. It was concluded that dietary PS and PSE supplementation could improve growth performance, immune performance and gut microbiome structure in mice, providing insights into its application as a potential feed additive in animals production.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome , Liver , Mice, Inbred C57BL , Phytosterols , Animals , Phytosterols/pharmacology , Phytosterols/administration & dosage , Gastrointestinal Microbiome/drug effects , Mice , Liver/metabolism , Liver/drug effects , Esters/pharmacology , Male , Cholesterol/blood , Triglycerides/blood , Animal Feed/analysis , Superoxide Dismutase/metabolism , Superoxide Dismutase/blood
18.
Anaesthesiologie ; 73(6): 398-407, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575771

ABSTRACT

BACKGROUND: Delayed extubation and transfer to the intensive care unit (ICU) in children undergoing major scoliosis surgery may increase postoperative complications, prolong hospital stay, and increase medical expenses; however, whether a child will require delayed extubation or transfer to the ICU after scoliosis orthopedic surgery is not fully understood. In this study, we reviewed the risk factors for delayed extubation and transfer to the ICU after scoliosis orthopedic surgery in children. METHOD: The electronic medical records of pediatric patients (≤ 18 years) who underwent posterior spinal fusion surgery between January 2018 and November 2021 were reviewed and analyzed. Patient characteristics (age, sex, body mass index, American Society of Anesthesiologists, ASA, grade, preoperative lung function, and congenital heart disease), preoperative Cobb angle, scoliosis type, correction rate, vertebral fusion segments, pedicle screws, surgical osteotomy, intraoperative bleeding, intraoperative allogeneic transfusion, intraoperative hemoglobin changes, intraoperative mean arterial pressure changes, intraoperative tidal volume (ml/kg predicted body weight), surgical time, postoperative extubation, and transfer to the ICU were collected. The primary outcomes were delayed extubation and transfer to the ICU. Multivariate logistic regression models were used to determine the risk factors for delayed extubation and ICU transfer. RESULTS: A total of 246 children who satisfied the inclusion criteria were enrolled in this study, of whom 23 (9.3%) had delayed extubation and 81 (32.9%) were transferred to the ICU after surgery. High ASA grade (odds ratio [OR] 5.42; 95% confidence interval [CI] 1.49-19.78; p = 0.010), high Cobb angle (OR 1.04; 95% CI 1.02-1.07; p < 0.001), moderate to severe pulmonary dysfunction (OR 10.9; 95% CI 2.00-59.08; p = 0.006) and prolonged surgical time (OR 1.01; 95% CI 1.00-1.03; p = 0.040) were risk factors for delayed extubation. A high Cobb angle (OR 1.02; 95% CI 1.01-1.04; p = 0.004), high intraoperative bleeding volume (OR 1.06; 95% CI 1.03-1.10; p = 0.001), allogeneic transfusion (OR 3.30; 95% CI 1.24-8.83; p = 0.017) and neuromuscular scoliosis (OR 5.38; 95% CI 1.59-18.25; p = 0.007) were risk factors for transfer to the ICU. A high Cobb angle was a risk factor for both delayed extubation and ICU transfer. Age, sex, body mass index, number of vertebral fusion segments, correction rate, and intraoperative tidal volume were not associated with delayed postoperative extubation and ICU transfer. CONCLUSION: The most common risk factor for delayed extubation and ICU transfer in pediatric patients who underwent posterior spinal fusion was a high Cobb angle. Determining risk factors for a poor prognosis may help optimize perioperative respiratory management strategies and planning of postoperative care for children undergoing complicated spinal surgery.


Subject(s)
Airway Extubation , Intensive Care Units , Scoliosis , Spinal Fusion , Humans , Scoliosis/surgery , Retrospective Studies , Female , Airway Extubation/statistics & numerical data , Male , Child , Spinal Fusion/methods , Spinal Fusion/adverse effects , Adolescent , Risk Factors , Patient Transfer/statistics & numerical data , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Time Factors
19.
Int J Biol Macromol ; 269(Pt 2): 131805, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677673

ABSTRACT

Endothelial repair is essential for restoring tissue fluid homeostasis following lung injury. R-spondin3 (RSPO3), a secreted protein mainly produced by endothelial cells (ECs), has shown its protective effect on endothelium. However, the specific mechanisms remain unknown. To explore whether and how RSPO3 regulates endothelial regeneration after inflammatory vascular injury, the role of RSPO3 in sepsis-induced pulmonary endothelial injury was investigated in EC-specific RSPO3 knockdown, inducible EC-specific RSPO3 deletion mice, EC-specific RSPO3 overexpression mice, systemic RSPO3-administration mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in plasma from septic patients. Here we show that plasma RSPO3 levels are decreased in septic patients and correlated with endothelial injury markers and PaO2/FiO2 index. Both pulmonary EC-specific knockdown of RSPO3 and inducible EC-specific RSPO3 deletion inhibit pulmonary ECs proliferation and exacerbate ECs injury, whereas intra-pulmonary EC-specific RSPO3 overexpression promotes endothelial recovery and attenuates ECs injury during endotoxemia. We show that RSPO3 mediates pulmonary endothelial regeneration by a LGR4-dependent manner. Except for ß-catenin, integrin-linked kinase (ILK)/Akt is also identified as a novel downstream effector of RSPO3/LGR4 signaling. These results conclude that EC-derived RSPO3 mediates pulmonary endothelial regeneration by LGR4-dependent activation of ß-catenin and ILK signaling pathways after inflammatory vascular injury.


Subject(s)
Endothelial Cells , Lung , Protein Serine-Threonine Kinases , Receptors, G-Protein-Coupled , Regeneration , Signal Transduction , Thrombospondins , beta Catenin , Animals , Thrombospondins/metabolism , Thrombospondins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Humans , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , beta Catenin/metabolism , beta Catenin/genetics , Endothelial Cells/metabolism , Lung/pathology , Lung/metabolism , Vascular System Injuries/metabolism , Vascular System Injuries/genetics , Vascular System Injuries/pathology , Cell Proliferation , Male , Sepsis/metabolism , Inflammation/metabolism , Inflammation/pathology
20.
Anal Chem ; 96(17): 6618-6627, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38626343

ABSTRACT

Tumor-derived extracellular vesicles (EVs) carry tumor-specific proteins and RNAs, thus becoming prevalent targets for early cancer diagnosis. However, low expression of EV cargos and insufficient diagnostic power of individual biomarkers hindered EVs application in clinical practice. Herein, we propose a multiplex Codetection platform of proteins and RNAs (Co-PAR) for EVs. Co-PAR adopted a pair of antibody-DNA probes to recognize the same target protein, which in turn formed a double-stranded DNA. Thus, the target protein could be quantified by detecting the double-stranded DNA via qPCR. Meanwhile, qRT-PCR simultaneously quantified the target RNAs. Thus, with a regular qPCR instrument, Co-PAR enabled the codetection of multiplex proteins and RNAs, with the sensitivity of 102 EVs/µL (targeting CD63) and 1 EV/µL (targeting snRNA U6). We analyzed the coexpressions of three protein markers (CD63, GPC-1, HER2) and three RNA markers (snRNA U6, GPC-1 mRNA, miR-10b) on EVs from three pancreatic cell lines and 30 human plasma samples using Co-PAR. The diagnostic accuracy of the 6-biomarker combination reached 92.9%, which was at least 6.2% higher than that of 3-biomarker combinations and at least 13.5% higher than that of 6 single biomarkers. Co-PAR, as a multiparameter detection platform for EVs, has great potential in early disease diagnosis.


Subject(s)
Biomarkers, Tumor , Early Detection of Cancer , Extracellular Vesicles , Pancreatic Neoplasms , Humans , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/metabolism , Biomarkers, Tumor/blood , Biomarkers, Tumor/analysis , RNA/analysis , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL