Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Poult Sci ; 103(7): 103798, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703759

ABSTRACT

Honokiol is a multifunctional polyphenol present in Magnolia officinalis. The effects of honokiol as a supplement in broiler chicken diets, and the underlying mechanisms, remain unclear. Therefore, the aim of the present study was to investigate the effects of honokiol on the growth performance, antioxidant capacity, and intestinal histomorphology of broiler chickens and to explore the underlying mechanisms. In total, 240 one-day-old broilers were randomly allocated to 5 dietary treatments, with 6 replicate pens and 8 birds per pen. Birds were fed a basal diet supplemented with 0 (blank control, BC), 100, 200, or 400 mg/kg honokiol (H100, H200, and H400), or 200 mg/kg bacitracin zinc (PC) for 42 d. The results showed that H200 and H400 increased body weight gain (BWG) and decreased feed conversion ratio (FCR) during the starter period (P < 0.05). H100 and H200 increased total superoxide dismutase (T-SOD) activity in the serum and decreased malondialdehyde (MDA) amount in the jejunum on d 42 (P < 0.05). Moreover, H100 increased villus height-to-crypt depth ratio in both the jejunum and ileum on d 21 (P < 0.05). PCR analysis showed that honokiol upregulated intestinal expression of glutathione peroxidase (GSH-Px) and downregulated intestinal expression of inducible nitric oxide synthase (iNOS) on d 42 (P < 0.05). The Shannon index, which represents the microbial alpha diversity, was reduced for the PC, H200, and H400 groups. Notably, honokiol treatment altered the cecal microbial community structure and promoted the enrichment of several bacteria, including Firmicutes and Lactobacillus. Higher production of short-chain fatty acids was observed in the cecal digesta of H100 birds, accompanied by an enriched glycolysis/gluconeogenesis pathway, according to the functional prediction of the cecal microbiota. This study provides evidence that honokiol improves growth performance, antioxidant capacity, and intestinal health of broiler chickens, possibly by manipulating the composition and function of the microbial community.


Subject(s)
Animal Feed , Antioxidants , Biphenyl Compounds , Cecum , Chickens , Diet , Dietary Supplements , Gastrointestinal Microbiome , Lignans , Animals , Chickens/physiology , Chickens/growth & development , Lignans/administration & dosage , Lignans/pharmacology , Animal Feed/analysis , Biphenyl Compounds/administration & dosage , Antioxidants/metabolism , Diet/veterinary , Dietary Supplements/analysis , Gastrointestinal Microbiome/drug effects , Cecum/microbiology , Cecum/drug effects , Random Allocation , Male , Intestines/drug effects , Intestines/anatomy & histology , Dose-Response Relationship, Drug , Animal Nutritional Physiological Phenomena/drug effects , Allyl Compounds , Phenols
2.
Animals (Basel) ; 13(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38136901

ABSTRACT

This study was conducted to investigate effects of dietary Limosilactobacillus fermentum and Lacticaseibacillus paracasei supplementation on the intestinal stem cell proliferation, immunity, and ileal microbiota of broiler chickens challenged by coccidia and Clostridium perfringens. A total of 336 one-day-old Ross 308 chickens were randomly assigned into four groups. Chickens in the control (CTR) group were fed basal diet, and chickens in the three challenged groups were fed basal diets supplemented with nothing (CCP group), 1.0 × 109 CFU/kg L. fermentum (LF_CCP group), and 1.0 × 109 CFU/kg L. paracasei (LP_CCP group), respectively. All challenged birds were infected with coccildia on day 9 and Clostridium perfringens during days 13-18. The serum and intestinal samples were collected on days 13 and 19. The results showed that L. fermentum significantly increased jejunal gene expression of cdxB (one of the intestinal stem cell marker genes) on day 13. Additionally, L. fermentum significantly up-regulated mRNA levels of JAK3 and TYK2 and tended to increase STAT6 mRNA expression in jejunum on day 19. In the cecal tonsil, both L. fermentum and L. paracasei decreased mRNA expression of JAK2 on day 13, and L. fermentum down-regulated JAK1-2, STAT1, and STAT5-6 gene expressions on day 19. Ileal microbiological analysis showed that coccidial infection increased the Escherichia-Shigella, Lactobacillus, and Romboutsia abundance and decreased Candidatus_Arthromitus richness on day 13, which were reversed by Lactobacillus intervention. Moreover, Lactobacilli increased ileal Lactobacillus richness on day 19. In conclusion, Lactobacilli alleviated the impairment of intestinal stem cell proliferation and immunity in coccidia- and C. perfringens-challenged birds via modulating JAK/STAT signaling and reshaping intestinal microflora.

SELECTION OF CITATIONS
SEARCH DETAIL