Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
NPJ Vaccines ; 3: 33, 2018.
Article in English | MEDLINE | ID: mdl-30155278

ABSTRACT

There is a pressing need for safe and highly effective Plasmodium falciparum (Pf) malaria vaccines. The circumsporozoite protein (CS), expressed on sporozoites and during early hepatic stages, is a leading target vaccine candidate, but clinical efficacy has been modest so far. Conversely, whole-sporozoite (WSp) vaccines have consistently shown high levels of sterilizing immunity and constitute a promising approach to effective immunization against malaria. Here, we describe a novel WSp malaria vaccine that employs transgenic sporozoites of rodent P. berghei (Pb) parasites as cross-species immunizing agents and as platforms for expression and delivery of PfCS (PbVac). We show that both wild-type Pb and PbVac sporozoites unabatedly infect and develop in human hepatocytes while unable to establish an infection in human red blood cells. In a rabbit model, similarly susceptible to Pb hepatic but not blood infection, we show that PbVac elicits cross-species cellular immune responses, as well as PfCS-specific antibodies that efficiently inhibit Pf sporozoite liver invasion in human hepatocytes and in mice with humanized livers. Thus, PbVac is safe and induces functional immune responses in preclinical studies, warranting clinical testing and development.

2.
J Med Chem ; 59(13): 6101-20, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27314305

ABSTRACT

In this paper we describe the optimization of a phenotypic hit against Plasmodium falciparum, based on a trisubstituted pyrimidine scaffold. This led to compounds with good pharmacokinetics and oral activity in a P. berghei mouse model of malaria. The most promising compound (13) showed a reduction in parasitemia of 96% when dosed at 30 mg/kg orally once a day for 4 days in the P. berghei mouse model of malaria. It also demonstrated a rapid rate of clearance of the erythrocytic stage of P. falciparum in the SCID mouse model with an ED90 of 11.7 mg/kg when dosed orally. Unfortunately, the compound is a potent inhibitor of cytochrome P450 enzymes, probably due to a 4-pyridyl substituent. Nevertheless, this is a lead molecule with a potentially useful antimalarial profile, which could either be further optimized or be used for target hunting.


Subject(s)
Antimalarials/chemistry , Antimalarials/therapeutic use , Malaria/drug therapy , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Humans , Malaria/parasitology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mice, SCID , Parasitemia/drug therapy , Parasitemia/parasitology , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL