Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters








Publication year range
1.
Emerg Microbes Infect ; 13(1): 2341144, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38847579

ABSTRACT

The public's health is gravely at risk due to the current global outbreak of emerging viruses, specifically SARS-CoV-2 and MPXV. Recent studies have shown that SARS-CoV-2 mutants (such as Omicron) exhibit a higher capability to antagonize the host innate immunity, increasing their human adaptability and transmissibility. Furthermore, current studies on the strategies for MPXV to antagonize the host innate immunity are still in the initial stages. These multiple threats from emerging viruses make it urgent to study emerging virus-host interactions, especially the viral antagonism of host antiviral innate immunity. Given this, we selected several representative viruses that significantly threatened human public health and interpreted the multiple strategies for these viruses to antagonize the host antiviral innate immunity, hoping to provide ideas for molecular mechanism research that emerging viruses antagonize the host antiviral innate immunity and accelerate the research progress. The IAV, SARS-CoV-2, SARS-CoV, MERS-CoV, EBOV, DENV, ZIKV, and HIV are some of the typical viruses. Studies have shown that viruses could antagonize the host antiviral innate immunity by directly or indirectly blocking antiviral innate immune signaling pathways. Proviral host factors, host restriction factors, and ncRNAs (microRNAs, lncRNAs, circRNAs, and vtRNAs) are essential in indirectly blocking antiviral innate immune signaling pathways. Furthermore, via controlling apoptosis, ER stress, stress granule formation, and metabolic pathways, viruses may antagonize it. These regulatory mechanisms include transcriptional regulation, post-translational regulation, preventing complex formation, impeding nuclear translocation, cleavage, degradation, and epigenetic regulation.


Subject(s)
Immunity, Innate , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , Host-Pathogen Interactions/immunology , Virus Diseases/immunology , Virus Diseases/virology , COVID-19/immunology , COVID-19/virology , Animals , Communicable Diseases, Emerging/virology , Communicable Diseases, Emerging/immunology
2.
Acta Pharmacol Sin ; 45(5): 879-889, 2024 May.
Article in English | MEDLINE | ID: mdl-38191914

ABSTRACT

MORF4-related gene on chromosome 15 (MRG15), a chromatin remodeller, is evolutionally conserved and ubiquitously expressed in mammalian tissues and cells. MRG15 plays vital regulatory roles in DNA damage repair, cell proliferation and division, cellular senescence and apoptosis by regulating both gene activation and gene repression via associations with specific histone acetyltransferase and histone deacetylase complexes. Recently, MRG15 has also been shown to rhythmically regulate hepatic lipid metabolism and suppress carcinoma progression. The unique N-terminal chromodomain and C-terminal MRG domain in MRG15 synergistically regulate its interaction with different cofactors, affecting its functions in various cell types. Thus, how MRG15 elaborately regulates target gene expression and performs diverse functions in different cellular contexts is worth investigating. In this review, we provide an in-depth discussion of how MRG15 controls multiple physiological and pathological processes.


Subject(s)
Epigenesis, Genetic , Humans , Animals
3.
J Cell Physiol ; 239(1): 97-111, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37921259

ABSTRACT

Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment, and the M2-type TAMs can promote tumor growth, invasion and angiogenesis, and suppress antitumor immune responses. It has been reported that spectrin beta, non-erythrocytic 1 (SPTBN1) may inhibit the infiltration of macrophages in Sptbn1+/-  mouse liver, but whether tumor SPTBN1 affects TAMs polarization remains unclear. This study investigated the effect and mechanism of tumor cell SPTBN1 on polarization and migration of TAMs in hepatoma and breast cancer. By analyzing tumor immune databases, we found a negative correlation between SPTBN1 and abundance of macrophages and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. By reverse transcription-quantitative real-time PCR assays and cell migration assays, the migration and M2 polarization of macrophages were enhanced by the culture medium from hepatocellular carcinoma cell line PLC/PRF/5, SNU449, and breast cancer cell line MDA-MB-231 with SPTBN1 suppression, which could be reversed by CXCL1 neutralizing antibody MAB275. Meanwhile, the ability of migration and colony formation of PLC/PRF/5, SNU449, and MDA-MB-231 cells were promoted when coculture with M2 macrophages. We also found that SPTBN1 regulated CXCL1 through p65 by cytoplasmic-nuclear protein isolation experiments and ChIP-qPCR. Our data suggest that tumor cell SPTBN1 inhibits migration and M2-type polarization of TAMs by reducing the expression and secretion of CXCL1 via inhibiting p65 nuclear localization.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Spectrin , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Liver Neoplasms/metabolism , Macrophages/metabolism , Tumor Microenvironment , Tumor-Associated Macrophages/pathology , Humans , Spectrin/metabolism , Chemokine CXCL1
4.
Nat Commun ; 14(1): 8428, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129407

ABSTRACT

Hepatic insulin resistance is central to the metabolic syndrome. Here we investigate the role of BTB and CNC homology 1 (BACH1) in hepatic insulin signaling. BACH1 is elevated in the hepatocytes of individuals with obesity and patients with non-alcoholic fatty liver disease (NAFLD). Hepatocyte-specific Bach1 deletion in male mice on a high-fat diet (HFD) ameliorates hyperglycemia and insulin resistance, improves glucose homeostasis, and protects against steatosis, whereas hepatic overexpression of Bach1 in male mice leads to the opposite phenotype. BACH1 directly interacts with the protein-tyrosine phosphatase 1B (PTP1B) and the insulin receptor ß (IR-ß), and loss of BACH1 reduces the interaction between PTP1B and IR-ß upon insulin stimulation and enhances insulin signaling in hepatocytes. Inhibition of PTP1B significantly attenuates BACH1-mediated suppression of insulin signaling in HFD-fed male mice. Hepatic BACH1 knockdown ameliorates hyperglycemia and improves insulin sensitivity in diabetic male mice. These results demonstrate a critical function for hepatic BACH1 in the regulation of insulin signaling and glucose homeostasis.


Subject(s)
Hyperglycemia , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Animals , Humans , Male , Mice , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Diet, High-Fat , Glucose/metabolism , Homeostasis , Hyperglycemia/metabolism , Insulin/metabolism , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism
5.
Cell Rep ; 42(12): 113468, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37995178

ABSTRACT

The role of BACH1 in the process of vascular smooth muscle cell (VSMC) differentiation from human embryonic stem cells (hESCs) remains unknown. Here, we find that the loss of BACH1 in hESCs attenuates the expression of VSMC marker genes, whereas overexpression of BACH1 after mesoderm induction increases the expression of VSMC markers during in vitro hESC-VSMC differentiation. Mechanistically, BACH1 binds directly to coactivator-associated arginine methyltransferase 1 (CARM1) during in vitro hESC-VSMC differentiation, and this interaction is mediated by the BACH1 bZIP domain. BACH1 recruits CARM1 to VSMC marker gene promoters and promotes VSMC marker expression by increasing H3R17me2 modification, thus facilitating in vitro VSMC differentiation from hESCs after the mesoderm induction. The increased expression of VSMC marker genes by BACH1 overexpression is partially abolished by inhibition of CARM1 or the H3R17me2 inhibitor TBBD in hESC-derived cells. These findings highlight the critical role of BACH1 in hESC differentiation into VSMCs by CARM1-mediated methylation of H3R17.


Subject(s)
Human Embryonic Stem Cells , Humans , Human Embryonic Stem Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Cell Line , Cell Differentiation/genetics , Methylation , Myocytes, Smooth Muscle/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism
6.
Front Microbiol ; 14: 1138979, 2023.
Article in English | MEDLINE | ID: mdl-37601381

ABSTRACT

Escherichia coli (E. coli) mutant strains have been reported to extend the life span of Caenorhabditis elegans (C. elegans). However, the specific mechanisms through which the genes and pathways affect aging are not yet clear. In this study, we fed Drosophila melanogaster (fruit fly) various E. coli single-gene knockout strains to screen mutant strains with an extended lifespan. The results showed that D. melanogaster fed with E. coli purE had the longest mean lifespan, which was verified by C. elegans. We conducted RNA-sequencing and analysis of C. elegans fed with E. coli purE (a single-gene knockout mutant) to further explore the underlying molecular mechanism. We used differential gene expression (DGE) analysis, enrichment analysis, and gene set enrichment analysis (GSEA) to screen vital genes and modules with significant changes in overall expression. Our results suggest that E. coli mutant strains may affect the host lifespan by regulating the protein synthesis rate (cfz-2) and ATP level (catp-4). To conclude, our study could provide new insights into the genetic influences of the microbiota on the life span of a host and a basis for developing anti-aging probiotics and drugs.

7.
ISME J ; 17(10): 1733-1740, 2023 10.
Article in English | MEDLINE | ID: mdl-37550381

ABSTRACT

Recent studies have shown that gut microorganisms can modulate host lifespan and activities, including sleep quality and motor performance. However, the role of gut microbial genetic variation in regulating host phenotypes remains unclear. In this study, we investigated the links between gut microbial genetic variation and host phenotypes using Saccharomyces cerevisiae and Drosophila melanogaster as research models. Our result suggested a novel role for peroxisome-related genes in yeast in regulating host lifespan and activities by modulating gut oxidative stress. Specifically, we found that deficiency in catalase A (CTA1) in yeast reduced both the sleep duration and lifespan of fruit flies significantly. Furthermore, our research also expanded our understanding of the relationship between sleep and longevity. Using a large sample size and excluding individual genetic background differences, we found that lifespan is associated with sleep duration, but not sleep fragmentation or motor performance. Overall, our study provides novel insights into the role of gut microbial genetic variation in regulating host phenotypes and offers potential new avenues for improving health and longevity.


Subject(s)
Gastrointestinal Microbiome , Longevity , Animals , Longevity/genetics , Drosophila melanogaster/genetics , Saccharomyces cerevisiae , Genetic Variation
8.
Environ Sci Pollut Res Int ; 30(38): 89253-89269, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37450186

ABSTRACT

We propose a climate change attention (CCA) index based on Google search volume index (GSVI) from 2004 to 2021 and show that it is an economically and statistically significant negative predictor for next month's energy stock returns. The index is extracted using principal component analysis (PCA), but the results are similar by using the equal-weighted average method. Compared with 14 traditional macroeconomic predictors, CCA performs the best and provides complementary information when added into bivariate and multivariate macro predictive models. When further considering the effect of CCA's forecasting power over different periods, strong evidence is shown that this outperformance is especially prominent in economic depressions and down market conditions. From the asset allocation perspective, CCA can provide a mean-variance investor with significant economic gains under alternative risk aversions. Our empirical results prove that investors' attention to climate change contains predictive information for excess returns of global traditional energy stock index.


Subject(s)
Climate Change , Investments , Principal Component Analysis
9.
Transl Res ; 261: 28-40, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37402419

ABSTRACT

Mitochondrial fission has been noted in the pathogenesis of dilated cardiomyopathy (DCM), but the underlying specific regulatory mechanism, especially in the development of doxorubicin (DOX)-induced cardiomyopathy remains unclear. In the present study, we explore whether the aspartate-glutamate carrier1 (AGC1) interacts with the fission protein dynamin-related protein 1 (Drp1) and reveal the functional and molecular mechanisms contributing to DOX-induced cardiomyopathy. Results of co-immunoprecipitation mass spectrometry (CO-IP MS) analysis based on heart tissue of DCM patients revealed that AGC1 expression was significantly upregulated in DCM-induced injury and AGC1 level was closely correlated with mitochondrial morphogenesis and function. We showed that AGC1 knockdown protected mice from DOX-induced cardiomyopathy by preventing mitochondrial fission, while the overexpression of AGC1 in the mouse heart led to impairment of cardiac function. Mechanistically, AGC1 overexpression could upregulate Drp1 expression and contribute to subsequent excessive mitochondrial fission. Specifically, AGC1 knockdown or the use of Drp1-specific inhibitor Mdivi-1 alleviated cardiomyocyte apoptosis and inhibited impairment of mitochondrial function induced by DOX exposure. In summary, our data illustrate that AGC1, as a novel contributor to DCM, regulates cardiac function via Drp1-mediated mitochondrial fission, indicating that targeting AGC1-Drp1 axis could be a potential therapeutic strategy for DOX-induced cardiomyopathy.

10.
Cardiovasc Res ; 119(9): 1842-1855, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37279500

ABSTRACT

AIMS: BACH1 is up-regulated in hypertrophic hearts, but its function in cardiac hypertrophy remains largely unknown. This research investigates the function and mechanisms of BACH1 in the regulation of cardiac hypertrophy. METHODS AND RESULTS: Male cardiac-specific BACH1 knockout mice or cardiac-specific BACH1 transgenic (BACH1-Tg) mice and their respective wild-type littermates developed cardiac hypertrophy induced by angiotensin II (Ang II) or transverse aortic constriction (TAC). Cardiac-specific BACH1 knockout in mice protected the hearts against Ang II- and TAC-induced cardiac hypertrophy and fibrosis, and preserved cardiac function. Conversely, cardiac-specific BACH1 overexpression markedly exaggerated cardiac hypertrophy and fibrosis and reduced cardiac function in mice with Ang II- and TAC-induced hypertrophy. Mechanistically, BACH1 silencing attenuated Ang II- and norepinephrine-stimulated calcium/calmodulin-dependent protein kinase II (CaMKII) signalling, the expression of hypertrophic genes, and hypertrophic growth of cardiomyocytes. Ang II stimulation promoted the nuclear localization of BACH1, facilitated the recruitment of BACH1 to the Ang II type 1 receptor (AT1R) gene promoter, and then increased the expression of AT1R. Inhibition of BACH1 attenuated Ang II-stimulated AT1R expression, cytosolic Ca2+ levels, and CaMKII activation in cardiomyocytes, whereas overexpression of BACH1 led to the opposite effects. The increased expression of hypertrophic genes induced by BACH1 overexpression upon Ang II stimulation was suppressed by CaMKII inhibitor KN93. The AT1R antagonist, losartan, significantly attenuated BACH1-mediated CaMKII activation and cardiomyocyte hypertrophy under Ang II stimulation in vitro. Similarly, Ang II-induced myocardial pathological hypertrophy, cardiac fibrosis, and dysfunction in BACH1-Tg mice were blunted by treatment with losartan. CONCLUSION: This study elucidates a novel important role of BACH1 in pathological cardiac hypertrophy by regulating the AT1R expression and the Ca2+/CaMKII pathway, and highlights potential therapeutic target in pathological cardiac hypertrophy.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium , Mice , Male , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Losartan , Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , Mice, Transgenic , Angiotensin II/metabolism , Mice, Knockout , Fibrosis , Mice, Inbred C57BL
11.
Vet Microbiol ; 282: 109769, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37148621

ABSTRACT

Transforming acidic coiled-coil containing protein 3 (TACC3) is a motor spindle protein that plays an essential role in stabilization of the mitotic spindle. In this study, we show that the overexpression of TACC3 reduces the viral titers of multiple influenza A viruses (IAVs). In contrast, the downregulation of TACC3 increases IAVs propagation. Next, we map the target steps of TACC3 requirement to the early stages of viral replication. By confocal microscopy and nuclear plasma separation experiment, we reveal that overexpression of TACC3 results in a substantial decrease of IAV NP accumulation in the nuclei of infected cells. We further show that viral attachment and internalization are not affected by TACC3 overexpression and detect that the early and late endosomal trafficking of IAV in TACC3 overexpression cells is slower than negative control cells. These results suggest that TACC3 exerts an impaired effect on the endosomal trafficking and nuclear import of vRNP, thereby negatively regulating IAV replication. Moreover, the infection of different IAV subtypes decreases the expression level of TACC3 in turn. Consequently, we speculate that IAV ensures the generation of offspring virions by antagonizing the expression of inhibitory factor TACC3. Collectively, our results establish TACC3 as an important inhibitory factor for replication of the IAV, suggesting that TACC3 could be a potential target for the development of future antiviral compounds.


Subject(s)
Influenza A virus , Influenza, Human , Animals , Humans , Active Transport, Cell Nucleus , Influenza A virus/genetics , Endosomes/metabolism , Virus Replication/physiology
12.
Heliyon ; 9(4): e14827, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025865

ABSTRACT

Aims: Altered lipid, energy metabolism and sleep disorders had been linked with coronary heart disease (CHD), however, the metabolic signatures and sleep rhythm in non-obstructive coronary atherosclerosis-CHD remain unclear. This pilot study aims to investigate the lipidome and central carbon metabolites profiles and associated sleep characteristics among CHD patients without traditional risk factors. Methods: From January to July 2021, 15 CHD patients and 15 healthy controls were randomly selected from the cardiology unit of Zhongshan Hospital, Shanghai. A total of 464 lipids and 45 central carbon metabolites (CCM) were quantified in blood plasma. Metabolic signatures were selected through orthogonal projections to latent structures discriminant analysis (OPLS-DA) and principal component analysis (PCA) was conducted to link the profiles of identified metabolites with CHD risk, sleep patterns, cardiometabolic traits and cardiac electrophysiologic parameters. Results: Using OPLS-DA, we identified 40 metabolites (variable influence on projection >1) that were altered in CHD patients, with 38 lipids, including 25 triacylglycerols (TAGs), 8 diacylglycerols (DAGs), being elevated and two CCM metabolites (i.e., succinic acid and glycolic acid) being reduced. Using PCA, four principal components (PCs) were identified and associated with increased risk of CHD. Specifically, one standard unit increasement in the PC that was characterized by high levels of DAG (18:1) and low succinic acid and the PC that was characterized by high levels of two sphingomyelins [SM (26:0) and SM (24:0)] was associated with 21% [odds ratio (OR) = 1.21, 95% CI: 1.02,1.43] and 14% (OR = 1.14,1.02,1.29) increased risk of CHD, respectively. Further regression analyses confirmed that the identified metabolites and the four PCs were positively associated with TG and ALT. Interestingly, glycolic acid was negatively associated with sleep quality and PSQI. Participants with night sleep mode tended to have a high level of the identified lipids, especially FFA (20:4). Conclusion: In the present pilot study, our findings provide clues on alterations of lipid and energy metabolism in CHD patients without traditional risk factors, with multiple triacylglycerols and diacylglycerols metabolites seemingly elevated and certain nonlipids metabolites (e.g., succinic acid and glycolic acid) decreased in cases. Considering the limit sample size, further studies are warranted to confirm our results.

13.
Nucleic Acids Res ; 51(9): 4284-4301, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36864760

ABSTRACT

The transcription factor BTB and CNC homology 1(BACH1) has been linked to coronary artery disease risk by human genome-wide association studies, but little is known about the role of BACH1 in vascular smooth muscle cell (VSMC) phenotype switching and neointima formation following vascular injury. Therefore, this study aims to explore the role of BACH1 in vascular remodeling and its underlying mechanisms. BACH1 was highly expressed in human atherosclerotic plaques and has high transcriptional factor activity in VSMCs of human atherosclerotic arteries. VSMC-specific loss of Bach1 in mice inhibited the transformation of VSMC from contractile to synthetic phenotype and VSMC proliferation and attenuated the neointimal hyperplasia induced by wire injury. Mechanistically, BACH1 suppressed chromatin accessibility at the promoters of VSMC marker genes via recruiting histone methyltransferase G9a and cofactor YAP and maintaining the H3K9me2 state, thereby repressing VSMC marker genes expression in human aortic smooth muscle cells (HASMCs). BACH1-induced repression of VSMC marker genes was abolished by the silencing of G9a or YAP. Thus, these findings demonstrate a crucial regulatory role of BACH1 in VSMC phenotypic transition and vascular homeostasis and shed light on potential future protective vascular disease intervention via manipulation of BACH1.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Chromatin , Muscle, Smooth, Vascular , Neointima , Phenotype , Animals , Humans , Mice , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Chromatin/genetics , Chromatin/metabolism , Homeostasis , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Neointima/genetics , Neointima/metabolism , Neointima/pathology , Neointima/prevention & control , Plaque, Atherosclerotic
14.
Cell Mol Gastroenterol Hepatol ; 15(6): 1475-1504, 2023.
Article in English | MEDLINE | ID: mdl-36801449

ABSTRACT

BACKGROUND & AIMS: The matricellular protein periostin plays a critical role in liver inflammation, fibrosis, and even carcinoma. Here, the biological function of periostin in alcohol-related liver disease (ALD) was investigated. METHODS: We used wild-type (WT), Postn-null (Postn-/-) mice and Postn-/- mice with periostin recovery to investigate the biological function of periostin in ALD. Proximity-dependent biotin identification analysis identified the protein that interacted with periostin, and coimmunoprecipitation analysis validated the interaction between protein disulfide isomerase (PDI) and periostin. Pharmacological intervention and genetic knockdown of PDI were used to investigate the functional correlation between periostin and PDI in ALD development. RESULTS: Periostin was markedly upregulated in the livers of mice that were fed ethanol. Interestingly, periostin deficiency severely aggravated ALD in mice, whereas the recovery of periostin in the livers of Postn-/- mice significantly ameliorated ALD. Mechanistic studies showed that the upregulation of periostin alleviated ALD by activating autophagy through inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) pathway, which was verified in murine models treated with the mTOR inhibitor rapamycin and the autophagy inhibitor MHY1485. Furthermore, a protein interaction map of periostin was generated by proximity-dependent biotin identification analysis. Interaction profile analysis identified PDI as a key protein that interacted with periostin. Intriguingly, periostin-mediated enhancement of autophagy by inhibiting the mTORC1 pathway in ALD depended on its interaction with PDI. Moreover, alcohol-induced periostin overexpression was regulated by transcription factor EB. CONCLUSIONS: Collectively, these findings clarify a novel biological function and mechanism of periostin in ALD and the periostin-PDI-mTORC1 axis is a critical determinant of ALD.


Subject(s)
Hepatocytes , Liver Diseases, Alcoholic , Mice , Animals , Hepatocytes/metabolism , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Biotin/metabolism , Liver Diseases, Alcoholic/pathology , Ethanol/toxicity , Mechanistic Target of Rapamycin Complex 1/metabolism , Autophagy
15.
Circ Res ; 130(7): 1038-1055, 2022 04.
Article in English | MEDLINE | ID: mdl-35196865

ABSTRACT

BACKGROUND: The transcription factor BACH1 (BTB and CNC homology 1) suppressed endothelial cells (ECs) proliferation and migration and impaired angiogenesis in the ischemic hindlimbs of adult mice. However, the role and underlying mechanisms of BACH1 in atherosclerosis remain unclear. METHODS: Mouse models of atherosclerosis in endothelial cell (EC)-specific-Bach1 knockout mice were used to study the role of BACH1 in the regulation of atherogenesis and the underlying mechanisms. RESULTS: Genetic analyses revealed that coronary artery disease-associated risk variant rs2832227 was associated with BACH1 gene expression in carotid plaques from patients. BACH1 was upregulated in ECs of human and mouse atherosclerotic plaques. Endothelial Bach1 deficiency decreased turbulent blood flow- or western diet-induced atherosclerotic lesions, macrophage content in plaques, expression of endothelial adhesion molecules (ICAM1 [intercellular cell adhesion molecule-1] and VCAM1 [vascular cell adhesion molecule-1]), and reduced plasma TNF-α (tumor necrosis factor-α) and IL-1ß levels in atherosclerotic mice. BACH1 deletion or knockdown inhibited monocyte-endothelial adhesion and reduced oscillatory shear stress or TNF-α-mediated induction of endothelial adhesion molecules and/or proinflammatory cytokines in mouse ECs, human umbilical vein ECs, and human aortic ECs. Mechanistic studies showed that upon oscillatory shear stress or TNF-α stimulation, BACH1 and YAP (yes-associated protein) were induced and translocated into the nucleus in ECs. BACH1 upregulated YAP expression by binding to the YAP promoter. BACH1 formed a complex with YAP inducing the transcription of adhesion molecules. YAP overexpression in ECs counteracted the antiatherosclerotic effect mediated by Bach1-deletion in mice. Rosuvastatin inhibited BACH1 expression by upregulating microRNA let-7a in ECs, and decreased Bach1 expression in the vascular endothelium of hyperlipidemic mice. BACH1 was colocalized with YAP, and the expression of BACH1 was positively correlated with YAP and proinflammatory genes, as well as adhesion molecules in human atherosclerotic plaques. CONCLUSIONS: These data identify BACH1 as a mechanosensor of hemodynamic stress and reveal that the BACH1-YAP transcriptional network is essential to vascular inflammation and atherogenesis. BACH1 shows potential as a novel therapeutic target in atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/prevention & control , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/pathology , Transcription Factors/metabolism
16.
Cell Mol Gastroenterol Hepatol ; 13(3): 949-973.e7, 2022.
Article in English | MEDLINE | ID: mdl-34737104

ABSTRACT

BACKGROUND & AIMS: Loss of Spectrin beta, non-erythrocytic 1 (SPTBN1) plays an important role in the carcinogenesis of hepatocellular carcinoma (HCC); however, the mechanisms underlying its involvement remain poorly understood. Defects in autophagy contribute to hepatic tumor formation. Hence, in this study, we explored the role and mechanism of SPTBN1 in the autophagy of hepatic stem cells (HSCs) and HCC cells. METHODS: Expansion, autophagy, and malignant transformation of HSCs were detected in the injured liver of Sptbn1+/- mice induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine treatment. Hippo pathway and Yes-associated protein (YAP) stabilization were examined in isolated HSCs, Huh-7, and PLC/PRF/5 HCC cells and hepatocytes with or without loss of SPTBN1. RESULTS: We found that heterozygous SPTBN1 knockout accelerated liver tumor development with 3,5-diethoxycarbonyl-1,4-dihydrocollidine induction. Rapamycin promoted autophagy in murine HSCs and reversed the increased malignant transformation induced by heterozygous SPTBN1 deletion. Loss of SPTBN1 also decreased autophagy and increased YAP stability and nuclear localization in human HCC cells and tissues, whereas YAP inhibition attenuated the effects of SPTBN1 deficiency on autophagy. Finally, we found that SPTBN1 positively regulated the expression of suppressor of variegation 3-9-enhancer of zeste-trithorax domain containing lysine methyltransferase 7 to promote YAP methylation, which may lead to YAP degradation and inactivation. CONCLUSIONS: Our findings provide the first demonstration that loss of SPTBN1 impairs autophagy of HSCs to promote expansion and malignant transformation during hepatocarcinogenesis. SPTBN1 also cooperates with suppressor of variegation 3-9-enhancer of zeste-trithorax domain containing lysine methyltransferase 7 to inactive YAP, resulting in enhanced autophagy of HCC cells. These results may open new avenues targeting SPTBN1 for the prevention and treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Autophagy , Carcinogenesis , Carcinoma, Hepatocellular/pathology , Carrier Proteins , Histone-Lysine N-Methyltransferase/metabolism , Liver Neoplasms/pathology , Methylation , Mice , Microfilament Proteins , YAP-Signaling Proteins
17.
Eur J Pharmacol ; 909: 174401, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34358482

ABSTRACT

SPTBN1 (spectrin beta, non-erythrocytic 1) has been linked to tumor progression and epithelial-mesenchymal transition (EMT). However, the role of SPTBN1 has yet to be investigated in breast cancer. This study aimed to evaluate the viability, growth, and migration ability of the breast cancer cell line MDA-MB-231 and BT549 using CCK-8 assay, xenograft models, and Transwell assays. The expression of SPTBN1, EMT-related genes, and miRNA21 in breast cancer cells and tissues were assessed by quantitative real-time polymerase chain reaction (qPCR) and Western blot. SPTBN1 staining of breast cancer tissues was analyzed by the Human Protein Atlas databases. Both chromatin immunoprecipitation qPCR and immunofluorescence were performed to detect how SPTBN1 regulates miRNA21. Our results showed that the expression of SPTBN1 in primary breast cancer tumors was dramatically lower than that in normal tissues and that lower levels of SPTBN1 were associated with significantly shorter progression-free survival. We also discovered that the loss of SPTBN1 promotes EMT, the viability of MDA-MB-231 and BT549 in vitro, and the growth of MDA-MB-231 tumor xenografts in vivo by upregulating miR-21 level. Furthermore, loss of SPTBN1-mediated miR-21 upregulation was dependent on the stability and nuclear translocation of NF-κB p65. Therefore, SPTBN1 is a pivotal regulator that inhibits EMT and the growth of breast cancer.


Subject(s)
Breast Neoplasms/genetics , MicroRNAs/genetics , Neoplasm Recurrence, Local/epidemiology , Spectrin/metabolism , Animals , Breast/pathology , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , Disease-Free Survival , Down-Regulation , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , MicroRNAs/metabolism , Neoplasm Recurrence, Local/genetics , Signal Transduction/genetics , Xenograft Model Antitumor Assays
18.
J Cell Physiol ; 236(5): 3220-3233, 2021 05.
Article in English | MEDLINE | ID: mdl-33094504

ABSTRACT

Protein palmitoylation, in which C16 fatty acid chains are attached to cysteine residues via a reversible thioester linkage, is one of the most common lipid modifications and plays important roles in regulating protein stability, subcellular localization, membrane trafficking, interactions with effector proteins, enzymatic activity, and a variety of other cellular processes. Moreover, the unique reversibility of palmitoylation allows proteins to be rapidly shuttled between biological membranes and cytoplasmic substrates in a process usually controlled by a member of the DHHC family of protein palmitoyl transferases (PATs). Notably, mutations in PATs are closely related to a variety of human diseases, such as cancer, neurological disorders, and immune deficiency conditions. In addition to PATs, intracellular palmitoylation dynamics are also regulated by the interplay between distinct posttranslational modifications, including ubiquitination and phosphorylation. Understanding the specific mechanisms of palmitoylation may reveal novel potential therapeutic targets for many human diseases.


Subject(s)
Acyltransferases/metabolism , Lipoylation/genetics , Membrane Proteins/metabolism , Protein Processing, Post-Translational/physiology , Animals , DNA Methylation/physiology , Humans , Substrate Specificity/physiology
19.
Acta Pharmacol Sin ; 42(5): 655-664, 2021 May.
Article in English | MEDLINE | ID: mdl-32913266

ABSTRACT

Mitochondria are highly dynamic organelles undergoing cycles of fusion and fission to modulate their morphology, distribution, and function, which are referred as 'mitochondrial dynamics'. Dynamin-related protein 1 (Drp1) is known as the major pro-fission protein whose activity is tightly regulated to clear the damaged mitochondria via mitophagy, ensuring a strict control over the intricate process of cellular and organ dynamics in heart. Various posttranslational modifications (PTMs) of Drp1 have been identified including phosphorylation, SUMOylation, palmitoylation, ubiquitination, S-nitrosylation, and O-GlcNAcylation, which implicate a role in the regulation of mitochondrial dynamics. An intact mitochondrial homeostasis is critical for heart to fuel contractile function and cardiomyocyte metabolism, while defects in mitochondrial dynamics constitute an essential part of the pathophysiology underlying various cardiovascular diseases (CVDs). In this review, we summarize current knowledge on the critical role of Drp1 in the pathogenesis of CVDs including endothelial dysfunction, smooth muscle remodeling, cardiac hypertrophy, pulmonary arterial hypertension, myocardial ischemia-reperfusion, and myocardial infarction. We also highlight how the targeting of Drp1 could potentially contribute to CVDs treatments.


Subject(s)
Cardiovascular Diseases/metabolism , Dynamins/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Animals , Cardiotonic Agents/therapeutic use , Cardiovascular Diseases/drug therapy , Dynamins/antagonists & inhibitors , Dynamins/chemistry , Enzyme Inhibitors/therapeutic use , Humans , Protein Processing, Post-Translational , Vascular Remodeling/physiology
20.
EBioMedicine ; 51: 102617, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31911270

ABSTRACT

The transcription factor Bach1 impairs angiogenesis after ischemic injury by suppressing Wnt/ß-catenin signaling; however, the specific domains responsible for the anti-angiogenic effects of Bach1 remain unclear. This study determined the role of the BTB domain of Bach1 in ischemic angiogenesis. Bach1 is highly expressed in circulating endothelial cells from acute myocardial infarction patients and is the early induction gene after ischemia. Mice were treated with adenoviruses coding for GFP (AdGFP), Bach1 (AdBach1), or a Bach1 mutant lacking the BTB domain (AdBach1-ΔBTB) after surgically induced hind-limb ischemia. Measures of blood-flow recovery, capillary density, and the expression of vascular endothelial growth factor (VEGF) and heme oxygenase-1 (HO-1) were significantly lower and ROS levels were higher in the AdBach1 group, but not in AdBach1-ΔBTB animals. Furthermore, transfection with AdBach1, but not AdBach1-ΔBTB, in human endothelial cells was associated with significant declines in 1) capillary density and hemoglobin content in the Matrigel-plug assay, 2) proliferation, migration, tube formation, and VEGF and HO-1 expression in endothelial cells. Bach1 binds directly with TCF4, and this interaction is mediated by residues 81-89 of the Bach1 BTB domain and the N-terminal domain of TCF4. Bach1, but not Bach1-ΔBTB, also co-precipitated with histone deacetylase 1 (HDAC1), while the full-length HDAC1 proteins, but not HDAC1 mutants lacking the protein-interaction domain, co-precipitated with Bach1. Collectively, these results demonstrate that the anti-angiogenic activity of Bach1 is crucially dependent on molecular interactions that are mediated by the protein's BTB domain, and this domain could be a drug target for angiogenic therapy.


Subject(s)
BTB-POZ Domain , Basic-Leucine Zipper Transcription Factors/metabolism , Neovascularization, Physiologic , Animals , Basic-Leucine Zipper Transcription Factors/chemistry , Basic-Leucine Zipper Transcription Factors/genetics , Disease Models, Animal , Endothelial Cells , Genes, Reporter , Histone Deacetylase 1 , Humans , Ischemia/etiology , Ischemia/metabolism , Ischemia/pathology , Mice , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/genetics , Protein Binding , Protein Interaction Domains and Motifs , Wnt Signaling Pathway
SELECTION OF CITATIONS
SEARCH DETAIL