Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Anal Bioanal Chem ; 416(21): 4779-4787, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38802680

ABSTRACT

Mechanotransduction is the essential process that cells convert mechanical force into biochemical responses, and electrochemical sensor stands out from existing techniques by providing quantitative and real-time information about the biochemical signals during cellular mechanotransduction. However, the intracellular biochemical response evoked by mechanical force has been poorly monitored. In this paper, we report a method to apply local stretch on single cell and simultaneously monitor the ensuing intracellular biochemical signals. Specifically, a ferromagnetic micropipette was fabricated to locally stretch a single cell labeled with Fe3O4 nanoparticles under the external magnetic field, and the SiC@Pt nanowire electrode (SiC@Pt NWE) was inserted into the cell to monitor the intracellular hydrogen peroxide (H2O2) production induced by the local stretch. As a proof of concept, this work quantitatively investigated the elevated amount of H2O2 levels in single endothelial cell under different stretching amplitudes. This work puts forward a new research modality to manipulate and monitor the mechanotransduction at the single-cell level.


Subject(s)
Hydrogen Peroxide , Mechanotransduction, Cellular , Nanowires , Single-Cell Analysis , Hydrogen Peroxide/analysis , Single-Cell Analysis/methods , Mechanotransduction, Cellular/physiology , Nanowires/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Humans , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Platinum/chemistry , Electrodes
2.
Proc Natl Acad Sci U S A ; 120(19): e2219994120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126689

ABSTRACT

Glutamate (Glu) is the major excitatory transmitter in the nervous system. Impairment of its vesicular release by ß-amyloid (Aß) oligomers is thought to participate in pathological processes leading to Alzheimer's disease. However, it remains unclear whether soluble Aß42 oligomers affect intravesicular amounts of Glu or their release in the brain, or both. Measurements made in this work on single Glu varicosities with an amperometric nanowire Glu biosensor revealed that soluble Aß42 oligomers first caused a dramatic increase in vesicular Glu storage and stimulation-induced release, accompanied by a high level of parallel spontaneous exocytosis, ultimately resulting in the depletion of intravesicular Glu content and greatly reduced release. Molecular biology tools and mouse models of Aß amyloidosis have further established that the transient hyperexcitation observed during the primary pathological stage is mediated by an altered behavior of VGLUT1 responsible for transporting Glu into synaptic vesicles. Thereafter, an overexpression of Vps10p-tail-interactor-1a, a protein that maintains spontaneous release of neurotransmitters by selective interaction with t-SNAREs, resulted in a depletion of intravesicular Glu content, triggering advanced-stage neuronal malfunction. These findings are expected to open perspectives for remediating Aß42-induced neuronal hyperactivity and neuronal degeneration.


Subject(s)
Alzheimer Disease , Glutamic Acid , Mice , Animals , Glutamic Acid/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neurons/metabolism , Brain/metabolism , Peptide Fragments/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL