Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Front Vet Sci ; 11: 1396053, 2024.
Article in English | MEDLINE | ID: mdl-39021407

ABSTRACT

The nutritional benefits of mare milk are attracting increasing consumer interest. Limited availability due to low yield poses a challenge for widespread adoption. Although lysine and threonine are often used to enhance protein synthesis and muscle mass in horses, their impact on mare milk yield and nutrient composition remains underexplored. This study investigated the effects of lysine and threonine supplementation on 24 healthy Yili mares, mares at day 30 of lactation, over a 120-day period. The mares were divided into control and three experimental groups (six mares each) under pure grazing conditions. The control group received no amino acid supplementation, while experimental groups received varying daily doses of lysine and threonine: Group I (40 g lysine + 20 g threonine), Group II (60 g lysine + 40 g threonine), and Group III (80 g lysine + 60 g threonine). Supplementation in Group II notably increased milk yield, while Groups I and II showed higher milk fat percentages, and all experimental groups exhibited improved milk protein percentages. Additionally, blood levels of total protein, albumin, triglycerides, and glucose were reduced. Detailed analyses from Group II at peak lactation (day 60) included targeted metabolomics and microbial sequencing of milk, blood, and fecal samples. Amino acid metabolomics assessed amino acid content in mare milk and serum, while 16S rRNA gene sequencing evaluated rectal microbial composition. The results indicated that lysine and threonine supplementation significantly increased levels of threonine and creatine in the blood, and lysine, threonine, glutamine, and alanine in mare milk. Microbial analysis revealed a higher prevalence of certain bacterial families and genera, including Prevotellaceae, p_251_o5, and Rikenellaceae at the family level, and unclassified_p_251_o5, Prevotellaceae_UCG_001, and Rikenellaceae_RC9_gut_group at the genus level. Multi-omics analysis showed positive correlations between specific fecal genera and amino acids in mare milk. For instance, Prevotellaceae_UCG_003, unclassified Bacteroidetes_BS11_gut_group, and Corynebacterium were positively correlated with lysine, while unclassified Prevotellaceae was positively correlated with alanine and threonine, and Unclassified_Bacteroidales_BS11_gut_group was positively correlated with glutamine. In summary, lysine and threonine supplementation in grazing lactating mares enhanced milk production and improved milk protein and fat quality. It is recommended that herders, veterinarians, and technicians consider amino acid content in the diet of lactating mares. The optimal supplementation levels under grazing conditions for Yili horses were determined to be 60 g lysine and 40 g threonine per day. Future research should explore the molecular mechanisms by which these amino acids influence milk protein and lipid synthesis in mare mammary epithelial cells.

2.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37422771

ABSTRACT

This study aimed to investigate the effects of ellagic acid (EA) supplementation on body weight (BW), nutrient digestibility, fecal microbiota, blood biochemical indices, and urolithin A metabolism in 1-yr-old Thoroughbred horses. A group of 18 1-yr-old Thoroughbred horses, with an average weight of 339.00 ±â€…30.11 kg, were randomly allocated into three groups of six horses each (three males and three females). The control group (n = 6) received only the basal diet, whereas test groups I (n = 6) and II (n = 6) were fed the basal diet supplemented with 15 mg/kg BW/d and 30 mg/kg BW/d of EA, respectively, for 40-d. The results showed that test group I and II horses had a significant increase in total weight gain by 49.47% and 62.74%, respectively, compared to the control group. The digestibility of various components in the diets of the test group horses was improved, including dry matter, organic matter, gross energy, neutral detergent fiber, acid detergent fiber, and calcium. Additionally, the digestibility of crude protein and phosphorus (P) in test group II horses increased significantly by 10.96% and 33.56% (P < 0.05), respectively. Moreover, EA supplementation significantly increased the fecal abundance of Firmicutes, Bacteroidetes (P < 0.05), Fibrobacterota, p-251-o5, Desemzia incerta (P < 0.05), and Fibrobacter sp. (P < 0.05), while reducing the abundance of Proteobacteria, Pseudomonadaceae, Pseudomonas, and Cupriavidus pauculus (P < 0.05 or P < 0.01). Fecal samples from test group II showed 89.47%, 100%, and 86.15% increases in the concentrations of acetic acid, valeric acid, and total volatile fatty acids, respectively. In addition, the plasma levels of total protein, and globulin increased significantly in test groups I (7.88% and 11.35%, respectively) and II (13.44% and 16.07%, respectively) compared to those in the control group (P < 0.05). The concentration of urolithin A in fecal and urine samples was positively correlated with increasing doses of EA. These findings suggest that supplemental feeding of EA improved nutrient digestibility, blood biochemical indices, and fecal microbiota in 1-yr-old Thoroughbred horses, promoting growth and development.


Ellagic acid (EA), a plant-derived feed additive, has beneficial physiological effects, including antioxidant and anti-inflammatory properties as well as intestinal microbiota regulation. Young Thoroughbred horses exhibit rapid growth and require ample nourishment. However, the underdeveloped functional anatomy of their gastrointestinal tract restricts the rate of feed utilization. Therefore, improving digestive tract function in horses at this stage promotes intestinal homeostasis, improves antioxidant and anti-inflammatory capabilities, and supports rapid growth and health. This study revealed that supplemental feeding of 1-yr-old Thoroughbred horses with EA improved nutrient digestibility and fecal floral diversity, leading to enhanced growth performance. The optimal dose was 30 mg/kg body weight.


Subject(s)
Ellagic Acid , Microbiota , Animals , Female , Male , Animal Feed/analysis , Diet/veterinary , Dietary Fiber/metabolism , Digestion , Ellagic Acid/pharmacology , Feces/microbiology , Horses , Nutrients/metabolism , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL