Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters








Publication year range
1.
Nature ; 629(8014): 1047-1054, 2024 May.
Article in English | MEDLINE | ID: mdl-38778108

ABSTRACT

Wireless modules that provide telecommunications and power-harvesting capabilities enabled by radio-frequency (RF) electronics are vital components of skin-interfaced stretchable electronics1-7. However, recent studies on stretchable RF components have demonstrated that substantial changes in electrical properties, such as a shift in the antenna resonance frequency, occur even under relatively low elastic strains8-15. Such changes lead directly to greatly reduced wireless signal strength or power-transfer efficiency in stretchable systems, particularly in physically dynamic environments such as the surface of the skin. Here we present strain-invariant stretchable RF electronics capable of completely maintaining the original RF properties under various elastic strains using a 'dielectro-elastic' material as the substrate. Dielectro-elastic materials have physically tunable dielectric properties that effectively avert frequency shifts arising in interfacing RF electronics. Compared with conventional stretchable substrate materials, our material has superior electrical, mechanical and thermal properties that are suitable for high-performance stretchable RF electronics. In this paper, we describe the materials, fabrication and design strategies that serve as the foundation for enabling the strain-invariant behaviour of key RF components based on experimental and computational studies. Finally, we present a set of skin-interfaced wireless healthcare monitors based on strain-invariant stretchable RF electronics with a wireless operational distance of up to 30 m under strain.


Subject(s)
Elasticity , Electronics , Equipment Design , Radio Waves , Skin , Stress, Mechanical , Wearable Electronic Devices , Wireless Technology , Humans , Electronics/instrumentation , Wireless Technology/instrumentation , Monitoring, Physiologic/instrumentation
2.
Micromachines (Basel) ; 14(3)2023 Mar 04.
Article in English | MEDLINE | ID: mdl-36985008

ABSTRACT

The aim of this study was to develop a flexible package technology using laser-assisted bonding (LAB) technology and an anisotropic solder paste (ASP) material ultimately to reduce the bonding temperature and enhance the flexibility and reliability of flexible devices. The heat transfer phenomena during the LAB process, mechanical deformation, and the flexibility of a flexible package were analyzed by experimental and numerical simulation methods. The flexible package was fabricated with a silicon chip and a polyimide (PI) substrate. When the laser beam was irradiated onto the flexible package, the temperatures of the solder increased very rapidly to 220 °C, high enough to melt the ASP solder, within 2.4 s. After the completion of irradiation, the temperature of the flexible package decreased quickly. It was found that the solder powder in ASP was completely melted and formed stable interconnections between the silicon chip and the copper pads, without thermal damage to the PI substrate. After the LAB process, the flexible package showed warpage of 80 µm, which was very small compared to the size of the flexible package. The stress of each component in the flexible package generated during the LAB process was also found to be very low. The flexible device was bent up to 7 mm without failure, and the flexibility can be improved further by reducing the thickness of the silicon chip. The bonding strength and environmental reliability tests also showed the excellent mechanical endurance of the flexible package.

3.
Opt Express ; 29(22): 35261-35270, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34808964

ABSTRACT

We fabricate three-dimensional wavelength-division multiplexing (3D-WDM) interconnects comprising three SixNy layers using a CMOS-compatible process. In these interconnects, the optical signals are coupled directly to a SixNy grating coupler in the middle SixNy layer and demultiplexed by a 1 × 4 SixNy array waveguide grating (AWG). The demultiplexed optical signals are interconnected from the middle SixNy layer to the bottom and top SixNy layers by four SiOxNy interlayer couplers. A low insertion loss and low crosstalk are achieved in the AWG. The coupling losses of the SiOxNy interlayer couplers and SixNy grating coupler are ∼1.52 dB and ∼4.2 dB, respectively.

4.
Polymers (Basel) ; 13(6)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804756

ABSTRACT

An epoxy-based solder paste (ESP) is a promising alternative to conventional solder pastes to improve the reliability of fine-pitch electrical joining because the epoxy encapsulates the solder joint. However, development of an appropriate epoxy formulation and investigation of its reaction mechanism with solder powder is challenging. In this study, we demonstrate a newly designed ESP consisting of diglycidyl ether of bisphenol F (DGEBF) resin, Sn-3.0 Ag-0.5 Cu (SAC305) solder powder, and L-glutamic acid (Glu), which is a proteinogenic amino acid for biosynthesis of proteins in living systems. The mechanism of the thermochemical reaction was explored and tentatively proposed, which reveals that the products of the reaction between SAC305 and Glu function as catalysts for the etherification of epoxides and alcohols produced by chemical bonding between DGEBF and Glu, consequently leading to highly crosslinked polymeric networks and an enhancement of impact resistance. Our findings provide further insight into the mechanism of the reaction between various formulations comprising an epoxy, amino acid, and solder powder, and their potential use as ESPs for electrical joining.

5.
J Nanosci Nanotechnol ; 21(5): 2959-2968, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33653466

ABSTRACT

This study explored the feasibility of a fast and uniform large-scale laser sintering method for sintering stretchable electrodes. A homogenized rectangular infrared (IR) laser with a wavelength of 980 nm was used in the sintering process. A highly stretchable composite electrode was fabricated using silver (Ag) microparticles and Ag flakes as the fillers and polyester resin as the binder on the polyurethane substrate. This laser-sintering method showed a sintering time of 1 sec and a very uniform temperature across the surface, resulting in enhancing the conductivity and stretchability of the electrodes. The effects of the laser power on the electrical and electromechanical properties of the electrodes were investigated. Using stretching, bending, and twisting tests, the feasibility of the laser-sintered stretchable electrodes was comprehensively examined. The electrode that was sintered at a laser power of 50 W exhibited superior stretchability at a strain of 210%, high mechanical endurance of 1,000 repeated cycles, and excellent adhesion. The stretchable electrodes showed excellent bendability and twistability in which the electrodes can be bent up to 1 mm and twisted up to 90° without any damage; thus, they are highly applicable as stretchable electrodes for wearable electronics. Additionally, the Ag composites were explored for use in a radio-frequency (RF) stretchable antenna to confirm the application of the laser-sintering method for stretchable and wearable electronic devices. The stretchable dipole antenna showed an excellent radiation efficiency of 95% and a highly stable operation, even when stretched to 90% strain.

6.
Appl Opt ; 54(17): 5597-602, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26192866

ABSTRACT

We investigate the reduction of transition loss across the star coupler boundary in a silicon arrayed waveguide grating (AWG) by suppressing multimode generation and scattering near the boundary of a star coupler. Eight-channel silicon AWGs were designed with optimal conditions based on enhanced field matching in combination with ultrashallow etched structures. The fabricated AWG demonstrates an insertion loss down to 0.63 dB with a cross talk of -23 to -25.3 dB, exhibiting ~0.8 dB improvement of insertion loss and ~4 dB improvement of cross talk compared to the Si AWG fabricated with a conventional double-etch technique.

7.
Sci Rep ; 5: 11329, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26061463

ABSTRACT

When silicon photonic integrated circuits (PICs), defined for transmitting and receiving optical data, are successfully monolithic-integrated into major silicon electronic chips as chip-level optical I/Os (inputs/outputs), it will bring innovative changes in data computing and communications. Here, we propose new photonic integration scheme, a single-chip optical transceiver based on a monolithic-integrated vertical photonic I/O device set including light source on bulk-silicon. This scheme can solve the major issues which impede practical implementation of silicon-based chip-level optical interconnects. We demonstrated a prototype of a single-chip photonic transceiver with monolithic-integrated vertical-illumination type Ge-on-Si photodetectors and VCSELs-on-Si on the same bulk-silicon substrate operating up to 50 Gb/s and 20 Gb/s, respectively. The prototype realized 20 Gb/s low-power chip-level optical interconnects for λ ~ 850 nm between fabricated chips. This approach can have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, hybrid memory cube, and LAN, SAN, data center and network applications.

8.
Opt Express ; 23(9): 12232-43, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25969309

ABSTRACT

We present the hybrid-integrated silicon photonic receiver and transmitter based on silicon photonic devices and 65 nm bulk CMOS interface circuits operating over 30 Gb/s with a 10(-12) bit error rate (BER) for λ ~1550nm. The silicon photonic receiver, operating up to 36 Gb/s, is based on a vertical-illumination type Ge-on-Si photodetector (Ge PD) hybrid-integrated with a CMOS receiver front-end circuit (CMOS Rx IC), and exhibits high sensitivities of -11 dBm, -8 dBm, and -2 dBm for data rates of 25 Gb/s, 30 Gb/s and 36 Gb/s, respectively, at a BER of 10(-12). The measured energy efficiency of the Si-photonic receiver is 2.6 pJ/bit at 25 Gb/s with an optical input power of -11 dBm, and 2.1 pJ/bit at 36 Gb/s with an optical power of -2 dBm. The hybrid-integrated silicon photonic transmitter, comprised of a depletion-type Mach-Zehnder modulator (MZM) and a CMOS driver circuit (CMOS Tx IC), shows better than 5.7 dB extinction ratio (ER) for 25 Gb/s, and 3 dB ER for 36 Gb/s. The silicon photonic transmitter achieves the data transmission with less than 10(-15) BER at 25 Gb/s, 10(-14) BER at 28 Gb/s, and 6 x 10(-13) BER with the energy efficiency of ~6 pJ/bit at 30 Gb/s.

9.
Opt Lett ; 39(8): 2310-3, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24978980

ABSTRACT

We present small-sized depletion-type silicon Mach-Zehnder (MZ) modulator with a vertically dipped PN depletion junction (VDJ) phase shifter based on a CMOS compatible process. The fabricated device with a 100 µm long VDJ phase shifter shows a VπLπ of ∼0.6 V·cm with a 3 dB bandwidth of ∼50 GHz at -2 V bias. The measured extinction ratios are 6 and 5.3 dB for 40 and 50 Gb/s operation under 2.5 Vpp differential drive, respectively. On-chip insertion loss is 3 dB for the maximum optical transmission. This includes the phase-shifter loss of 1.88 dB/100 µm, resulting mostly from the extra optical propagation loss through the polysilicon-plug structure for electrical contact, which can be readily minimized by utilizing finer-scaled lithography nodes. The experimental result indicates that a compact depletion-type MZ modulator based on the VDJ scheme can be a potential candidate for future chip-level integration.

10.
Opt Express ; 21(24): 29313-9, 2013 Dec 02.
Article in English | MEDLINE | ID: mdl-24514484

ABSTRACT

This paper reports a fiber-to-chip coupler consisting of a silicon inverted taper and a silicon oxynitride (SiON) double stage taper, where the cascaded taper structure enables adiabatic mode transfer between a submicron silicon waveguide and a single mode fiber. The coupler, fabricated by a simplified process, demonstrates an average coupling loss of 3.6 and 4.2 dB for TM and TE polarizations, respectively, with a misalignment tolerance of ± 2.2 µm for 1 dB loss penalty.

11.
Opt Express ; 21(25): 30718-25, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24514647

ABSTRACT

We present high-sensitivity photoreceivers based on a vertical- illumination-type 100% Ge-on-Si p-i-n photodetectors (PDs), which operate up to 50 Gb/s with high responsivity. A butterfly-packaged photoreceiver using a Ge PD with 3-dB bandwidth (f(-3dB)) of 29 GHz demonstrates the sensitivities of -10.15 dBm for 40 Gb/s data rate and -9.47 dBm for 43 Gb/s data rate, at BER of 10(-12) and λ ~1550 nm. Also a photoreceiver based on a Ge PD with f(-3dB)~19 GHz shows -14.14 dBm sensitivity at 25 Gb/s operation. These results prove the high performance levels of vertical-illumination type Ge PDs ready for practical high-speed network applications.

12.
Opt Express ; 19(27): 26936-47, 2011 Dec 19.
Article in English | MEDLINE | ID: mdl-22274277

ABSTRACT

We present high performance silicon photonic circuits (PICs) defined for off-chip or on-chip photonic interconnects, where PN depletion Mach-Zehnder modulators and evanescent-coupled waveguide Ge-on-Si photodetectors were monolithically integrated on an SOI wafer with CMOS-compatible process. The fabricated silicon PIC(off-chip) for off-chip optical interconnects showed operation up to 30 Gb/s. Under differential drive of low-voltage 1.2 V(pp), the integrated 1 mm-phase-shifter modulator in the PIC(off-chip) demonstrated an extinction ratio (ER) of 10.5dB for 12.5 Gb/s, an ER of 9.1dB for 20 Gb/s, and an ER of 7.2 dB for 30 Gb/s operation, without adoption of travelling-wave electrodes. The device showed the modulation efficiency of V(π)L(π) ~1.59 Vcm, and the phase-shifter loss of 3.2 dB/mm for maximum optical transmission. The Ge photodetector, which allows simpler integration process based on reduced pressure chemical vapor deposition exhibited operation over 30 Gb/s with a low dark current of 700 nA at -1V. The fabricated silicon PIC(intra-chip) for on-chip (intra-chip) photonic interconnects, where the monolithically integrated modulator and Ge photodetector were connected by a silicon waveguide on the same chip, showed on-chip data transmissions up to 20 Gb/s, indicating potential application in future silicon on-chip optical network. We also report the performance of the hybrid silicon electronic-photonic IC (EPIC), where a PIC(intra-chip) chip and 0.13µm CMOS interface IC chips were hybrid-integrated.


Subject(s)
Optical Devices , Photometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Silicon/chemistry , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Microwaves , Photons , Semiconductors , Systems Integration
13.
Opt Express ; 18(16): 16474-9, 2010 Aug 02.
Article in English | MEDLINE | ID: mdl-20721034

ABSTRACT

We present a high-sensitivity photoreceiver based on a vertical- illumination-type 100% Ge-on-Si photodetector. The fabricated p-i-n photodetector with a 90 microm-diameter mesa shows the -3 dB bandwidth of 7.7 GHz, and the responsivity of 0.9 A/W at lambda approximately 1.55 microm, corresponding to the external quantum efficiency of 72%. A TO-can packaged Ge photoreceiver exhibits the sensitivity of -18.5 dBm for a BER of 10(-12) at data rate of 10 Gbps. This result proves the capability of a cost-effective 100% Ge-on-Si photoreceiver which can readily replace the III-V counterparts for optical communications.


Subject(s)
Electronics/instrumentation , Germanium , Nanoparticles , Optics and Photonics/instrumentation , Semiconductors , Silicon , Equipment Design , Light
SELECTION OF CITATIONS
SEARCH DETAIL