Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
N Engl J Med ; 373(21): 2025-2037, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26488565

ABSTRACT

BACKGROUND: The RTS,S/AS01 vaccine targets the circumsporozoite protein of Plasmodium falciparum and has partial protective efficacy against clinical and severe malaria disease in infants and children. We investigated whether the vaccine efficacy was specific to certain parasite genotypes at the circumsporozoite protein locus. METHODS: We used polymerase chain reaction-based next-generation sequencing of DNA extracted from samples from 4985 participants to survey circumsporozoite protein polymorphisms. We evaluated the effect that polymorphic positions and haplotypic regions within the circumsporozoite protein had on vaccine efficacy against first episodes of clinical malaria within 1 year after vaccination. RESULTS: In the per-protocol group of 4577 RTS,S/AS01-vaccinated participants and 2335 control-vaccinated participants who were 5 to 17 months of age, the 1-year cumulative vaccine efficacy was 50.3% (95% confidence interval [CI], 34.6 to 62.3) against clinical malaria in which parasites matched the vaccine in the entire circumsporozoite protein C-terminal (139 infections), as compared with 33.4% (95% CI, 29.3 to 37.2) against mismatched malaria (1951 infections) (P=0.04 for differential vaccine efficacy). The vaccine efficacy based on the hazard ratio was 62.7% (95% CI, 51.6 to 71.3) against matched infections versus 54.2% (95% CI, 49.9 to 58.1) against mismatched infections (P=0.06). In the group of infants 6 to 12 weeks of age, there was no evidence of differential allele-specific vaccine efficacy. CONCLUSIONS: These results suggest that among children 5 to 17 months of age, the RTS,S vaccine has greater activity against malaria parasites with the matched circumsporozoite protein allele than against mismatched malaria. The overall vaccine efficacy in this age category will depend on the proportion of matched alleles in the local parasite population; in this trial, less than 10% of parasites had matched alleles. (Funded by the National Institutes of Health and others.).


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Africa , Female , Genetic Variation , Humans , Infant , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Treatment Outcome
2.
Biometrics ; 69(2): 328-37, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23421613

ABSTRACT

In randomized placebo-controlled preventive HIV vaccine efficacy trials, an objective is to evaluate the relationship between vaccine efficacy to prevent infection and genetic distances of the exposing HIV strains to the multiple HIV sequences included in the vaccine construct, where the set of genetic distances is considered as the continuous multivariate "mark" observed in infected subjects only. This research develops a multivariate mark-specific hazard ratio model in the competing risks failure time analysis framework for the assessment of mark-specific vaccine efficacy. It allows improved efficiency of estimation by employing the semiparametric method of maximum profile likelihood estimation in the vaccine-to-placebo mark density ratio model. The model also enables the use of a more efficient estimation method for the overall log hazard ratio in the Cox model. In addition, we propose testing procedures to evaluate two relevant hypotheses concerning mark-specific vaccine efficacy. The asymptotic properties and finite-sample performance of the inferential procedures are investigated. Finally, we apply the proposed methods to data collected in the Thai RV144 HIV vaccine efficacy trial.


Subject(s)
AIDS Vaccines/pharmacology , HIV Infections/prevention & control , Proportional Hazards Models , Randomized Controlled Trials as Topic/statistics & numerical data , AIDS Vaccines/genetics , AIDS Vaccines/immunology , Biometry , HIV/genetics , HIV/immunology , HIV Infections/immunology , HIV Infections/virology , Humans , Likelihood Functions , Models, Statistical , Multivariate Analysis
SELECTION OF CITATIONS
SEARCH DETAIL