Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters








Publication year range
1.
ACS Sens ; 9(2): 602-614, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38060197

ABSTRACT

In this study, an ultraslim thermal flow sensor system integrated onto a 340 µm diameter medical guidewire was developed using a laser filament scanning sintering method for the early diagnosis of cardiovascular diseases. The proposed system is a calorimetric-based micro thermal flow sensor comprising a microheater and two thermistors. Prior to fabrication, the sensor design was optimized through flow simulation, and the patterned sensor was successfully implemented on a thin and curved surface of the medical guidewire using a laser patterning method with Ag nanoparticles. The performance of the ultraslim thermal flow sensor-on-guidewire system (SoW) was evaluated under pulsatile flow by using an artificial heartbeat simulator with differentially induced fluid flow velocities of up to 60 cm/s. The resulting electrical signals generated by the temperature difference between the two thermistors caused by the fluid flow were measured across different velocity ranges. Based on the obtained data, a calibration curve was derived to establish the relationship between the fluid velocity and the sensor output voltage. Furthermore, the SoW was tested on living animals, whereby the measured blood flow velocities were 60-90 cm/s in the left coronary artery of pigs. This research demonstrates the potential of ultraslim microsensors, such as the developed thermal flow sensor system, for various industries, particularly in the medical field.


Subject(s)
Cardiovascular Diseases , Metal Nanoparticles , Animals , Female , Swine , Silver , Calibration , Lasers
2.
Micromachines (Basel) ; 13(7)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35888849

ABSTRACT

The domain of edge displays with 2.5D or 3D curved designs has been expanded to improve user convenience. The currently available 3D cover glass offers a limited curvature radius of at least 5 mm and a curvature less than 88°, due to limitations in the undercuts and formability of parts. The development of a full 3D cover, applicable to next-generation displays, requires cover glass molding technology with a curvature exceeding 90°. Here, a mold design and molding process, which addresses the current limitations by dividing the existing glass molding press (GMP) process into two stages, is proposed. The bending geometry of the glass prepared on the basis of the proposed mold design plan during single-step compression forming and two-step compression forming was predicted using commercial analysis software. A molding product with a curvature radius of 2.5 mm and an angle of curvature of 138.9° was produced when process conditions with bending by up to 180° with no damage were applied during actual forming experiments. Further research on annealing and cooling processes of GMP is expected to enable the design and process implementation to manufacture curved glass with a single curvature of at least 90° and multiple curvatures.

3.
ACS Nano ; 16(8): 11708-11719, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35730591

ABSTRACT

Increasing accessibility of energy storage platforms through user interface is significant in realizing autonomous power supply systems because they can be expanded in multidimensional directions to enable pervasive and customized energy storage systems (ESSs) for portable and miniaturized electronics. Herein, we implemented a high-performance asymmetric microsupercapacitor (MSC) on a natural stone surface, which represents a class of omnipresent, low-cost, ecofriendly, and recyclable energy storage interface for sustainable and conveniently accessible ESSs. Highly conductive and porous Cu electrodes were robustly fabricated on a rough marble substrate via explosive reduction-sintering of cost-effective CuO nanoparticles by using instantaneous, inexpensive, and simple laser-material interaction (LMI) technology. Faradaic Fe3O4 and capacitive Mn3O4 were sequentially electroplated on the surface of the porous Cu interdigitated electrodes to demonstrate hybrid MSC with a high-potential window and specific area. Despite the irregular geometry of the stone interface, the laser-induced MSC module produced high areal energy density and power density (6.55 µWh cm-2 and 1.2 mW cm-2, respectively) without the use of complex integrated circuit fabrication methods, such as photolithography, vacuum deposition, or chemical etching. The fabricated MSC stone cells were successfully scaled up via serial or parallel connections to achieve the concept of a scalable energy storage wall applicable as a three-dimensional energy station inside or outside a whole-building interface. The excellent durability of the MSC wall was confirmed by harsh-impact tests, and it was attributed to the robustness of the LMI-derived Cu current collectors and electroplated MSC metal oxides. Furthermore, a natural stone substrate with high mechanical toughness could be recycled by grinding the MSC conductors and active layers, thus considerably reducing the environmental pollutants and helping to realize green electronics.

4.
Sci Adv ; 7(47): eabk1224, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34797704

ABSTRACT

Notwithstanding the success of nanolayered coatings in the reduction of wear at nano-/microscales, the improvement of the wear resistance at the macroscale remains an issue. Moreover, the effects of nanointerfaces in nanolayered coatings on their macrotribological properties are not understood well. This paper reports on the engineering of nanointerfaces in diamond-like C/Cr nanolayered coatings to tailor their characteristics including the degree of intermixing, defects, and Cr growth mode. The result was the fabrication of a coating with subnanometer-thick periodic albeit discrete Cr interlayers. This was achieved using our patented deposition technique. This coating contained less interfacial defects compared to classic nanolayered coatings with continuous nanolayers and presented record-breaking wear rates at the macroscale. Finite Element analysis was performed and micropatterning strategy was used to reduce the wear rate further. Last, we report on discovery of a dimensionless parameter that can be used to predict the wear resistance of carbon-based nanolayered coatings.

5.
ACS Appl Mater Interfaces ; 10(42): 36523-36530, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30260209

ABSTRACT

We report a novel one-step bottom-up fabrication method for multiscale-structured black Si, which is characterized by randomly distributed microscale Si layers covered with sub-100 nm protrusions with submicron boundary grooves. The unique multiscale structure, suggested as a "nanocanyon," effectively minimizes light reflection over a broad spectrum by diversifying the scattering routes from the nanotextured surface to the wide distributed boundary micronanoscale grooves. This structure was achieved by hydrophobic clustering and local aggregation of instantaneously melted Si nanocrystals on a glass substrate under laser irradiation. This method can replace the complicated conventional silicon processes, such as patterning for selective Si formation, texturing for improved absorption, and doping for modifying the electrical properties, because the proposed method obviates the need for photolithography, chemical etching, vacuum processes, and expensive wafers. Finally, black Si photosensor arrays were successfully demonstrated by a low-cost solution process and a laser growth sintering technique for microchannel fabrication. The results show the great potential of the proposed fabrication method for low-cost and sustainable production of highly sensitive optoelectronics and as an alternative to conventional wafer-based photosensor manufacturing techniques.

6.
Sci Rep ; 6: 34629, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27703204

ABSTRACT

Single-layer flexible touch sensor that is designed for the indium-tin-oxide (ITO)-free, bendable, durable, multi-sensible, and single layer transparent touch sensor was developed via a low-cost and one-step laser-induced fabrication technology. To this end, an entirely novel approach involving material, device structure, and even fabrication method was adopted. Conventional metal oxides based multilayer touch structure was substituted by the single layer structure composed of integrated silver wire networks of sensors and bezel interconnections. This structure is concurrently fabricated on a glass substitutive plastic film via the laser-induced fabrication method using the low-cost organometallic/nanoparticle hybrid complex. In addition, this study addresses practical solutions to heterochromia and interference problem with a color display unit. As a result, a practical touch sensor is successfully demonstrated through resolving the heterochromia and interference problems with color display unit. This study could provide the breakthrough for early realization of wearable device.

7.
Adv Mater ; 27(41): 6397-403, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26372164

ABSTRACT

Laser induced selective photothermochemical reduction is demonstrated to locally and reversibly control the oxidation state of Cu and Cu oxide nanowires in ambient conditions without any inert gas environment. This new concept of "nanorecycling" can monolithically integrate Cu and Cu oxide nanowires by restoring oxidized Cu, considered unusable for the electrode, back to a metallic state for repetitive reuse.


Subject(s)
Copper/chemistry , Nanowires/chemistry , Electrodes , Lasers , Oxidation-Reduction , Spectrometry, X-Ray Emission
8.
Adv Mater ; 26(33): 5808-14, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-24913621

ABSTRACT

A facile fast laser nanoscale welding process uses the plasmonic effect at a nanowire (NW) junction to suppress oxidation and successfully fabricate a Cu-NW-based percolation-network conductor. The "nanowelding" process does not require an inert or vacuum environment. Due to the low-temperature and fast-process nature, plasmonic laser nanowelding may form Cu-nanowire networks on heat-sensitive, flexible or even stretchable substrates.

9.
Small ; 9(12): 2111-8, 2013 Jun 24.
Article in English | MEDLINE | ID: mdl-23335383

ABSTRACT

A novel adaptive electrode fabrication method using optically self-selected interfacial adhesion between a laser-processed metal layer and polymer film is introduced to fabricate cost-effectively a high-resolution arbitrary electrode with high conductivity. The quality is close to that from vacuum deposition on a highly heat sensitive polymer film, with active response to various design requirements. A highly conductive metal film (resistivity: 3.6 µΩ cm) below a 5 µm line width with a uniform stepwise profile and mirror surface quality (R(rms) : 5-6 nm) is fabricated on a cheap polymer film with a heat resistance limit of below 100 °C. Severe durability tests are successfully completed without using any adhesion promoters. Finally, a highly transparent and conductive electrode with a transparency above 95% and sheet resistance of less than 10 Ω sq⁻¹ is fabricated on a polymer film and on glass by using this method. These results can help realize a potential high-throughput, low-cost, solution-processable replacement for transparent conductive oxides.

10.
Opt Express ; 20(27): 29111-20, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23263149

ABSTRACT

Adaptive mass fabrication method based on laser-induced plasmonic local surface defunctionalization was suggested to realize solution-based high resolution self-patterning on transparent substrate in parallel. After non-patterned functional monolayer was locally deactivated by laser-induced metallic plasma species, various micro/nano metal structures could be simultaneously fabricated by the parallel self-selective deposition of metal nanoparticles on a specific region. This method makes the eco-friendly and cost-effective production of high resolution pattern possible. Moreover, it can respond to design change actively due to the broad controllable range and easy change of key patterning specifications such as a resolution (subwavelength~100 µm), thickness (100 nm~6 µm), type (dot and line), and shape.


Subject(s)
Lasers , Manufactured Materials/radiation effects , Surface Plasmon Resonance/methods , Materials Testing , Surface Properties/radiation effects
11.
Opt Express ; 19(3): 2573-9, 2011 Jan 31.
Article in English | MEDLINE | ID: mdl-21369077

ABSTRACT

In this paper, we present a new laser direct patterning method that selectively cures nanoparticles self-generated from organometallic ink by proper thermal decomposition. This approach has several advantages in the curing rate, resolution and pattern quality compared with the conventional nanoparticle ink based direct laser curing method. It was found that a laser wavelength which is more weakly absorbed by the nanoparticles could produce a more stable and homogeneous curing condition. Finally, arbitrary shaped silver electrodes with narrow width and uniform profile could be achieved on a polymer substrate at a high curing rate of 25 mm/s. This process can be applied for flexible electronics fabrications on heat sensitive polymer substrates.


Subject(s)
Ink , Lasers , Metals/chemistry , Microelectrodes , Nanoparticles/chemistry , Nanoparticles/radiation effects , Organic Chemicals/radiation effects , Equipment Design , Equipment Failure Analysis , Materials Testing , Metals/radiation effects , Nanoparticles/ultrastructure , Organic Chemicals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL